
Network Analysis Tools (NeAT)
Tutorial

Sylvain Brohée
sbrohee@ulb.ac.be Karoline Faust

kfaust@ulb.ac.be

Jacques van Helden
jvhelden@ulb.ac.be

Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)
Laboratory of Genome and Network Biology

Université Libre de Bruxelles, Belgium
http://www.bigre.ulb.ac.be/

September 4, 2009

2

Contents

0.1 Warning . 6

1 Introduction 7

2 Network visualization and format conversion 9
2.1 Introduction . 9

2.1.1 Network visualization . 9
2.1.2 Graph formats . 9

2.2 Visualisation of a co-expression network 10
2.2.1 Study case . 10
2.2.2 Protocol for the web server 10
2.2.3 Protocol for the command-line tools 12

3 Comparisons between networks 15
3.1 Introduction . 15
3.2 Computing the intersection, union and differences between two graphs 15

3.2.1 Study case . 15
3.2.2 Protocol for the web server 16
3.2.3 Protocol for the command-line tools 16
3.2.4 Interpretation of the results 17

3.3 Strengths and weaknesses of the approach 20
3.4 Exercises . 20
3.5 Troubleshooting . 20

4 Node degree statistics 21
4.1 Introduction . 21
4.2 Analysis of the node degree distribution of a biological network . . . 21

4.2.1 Study case . 21
4.2.2 Protocol for the web server 22
4.2.3 Protocol for the command-line tools 22
4.2.4 Interpretation of the results 23

5 Study of the neighborhood of the nodes 25
5.1 Introduction . 25

3

4 CONTENTS

5.2 Analysis of the neighbours of orphan nodes in an interaction protein
network . 26
5.2.1 Study case . 26
5.2.2 Protocol for the web server 26
5.2.3 Protocol for the command-line tools 27
5.2.4 Interpretation of the results 28

6 Graph clustering 31
6.1 Introduction . 31
6.2 Network clustering comparison . 32

6.2.1 Study case . 32
6.2.2 Protocol for the web server 32
6.2.3 Protocol for the command-line tools 34
6.2.4 Interpretation of the results 36

7 Influence of graph alteration and randomization on clustering 41
7.1 Introduction . 41
7.2 Quantitative assessment of a clustering algorithm 41

7.2.1 Study case . 41
7.2.2 Protocol for the web server 42
7.2.3 Protocol for the command-line tools 44
7.2.4 Interpretation of the results 45

8 Path finding 47
8.1 Introduction . 47
8.2 Computing the k shortest paths in weighted networks 48

8.2.1 Study case . 48
8.2.2 Protocol for the web server 48
8.2.3 Protocol for the command-line tools 49
8.2.4 Interpretation of the results 49

8.3 Summary . 49
8.4 Strengths and Weaknesses of the approach 50

8.4.1 Strengths . 50
8.4.2 Weaknesses . 50

8.5 Troubleshooting . 50

9 Metabolic path finding 51
9.1 Introduction . 51
9.2 Enumerating metabolic pathways between compounds, reactions or en-

zymes . 52
9.2.1 Study case . 52
9.2.2 Protocol for the web server 52
9.2.3 Protocol for the command-line tools 53
9.2.4 Interpretation of the results 53

9.3 Summary . 54
9.4 Strengths and Weaknesses of the approach 54

CONTENTS 5

9.4.1 Strengths . 54
9.4.2 Weaknesses . 55

9.5 Troubleshooting . 55

10 KEGG network provider 57
10.1 Introduction . 57
10.2 Construction of yeast and E. coli metabolic networks 58

10.2.1 Study case . 58
10.2.2 Protocol for the web server 58
10.2.3 Protocol for the command-line tools 59
10.2.4 Interpretation of the results 59

10.3 Summary . 60
10.4 Troubleshooting . 60

11 Pathway inference 61
11.1 Introduction . 61
11.2 Inferring a pathway for a set of co-expressed genes 61

11.2.1 Protocol for the web server 61
11.2.2 Protocol for the command-line tools 62
11.2.3 Interpretation of the results 62

11.3 Summary . 63
11.4 Strengths and Weaknesses of the approach 63

11.4.1 Strengths . 63
11.4.2 Weaknesses . 64

11.5 Troubleshooting . 64

6 CONTENTS

0.1 Warning
This tutorial is in construction. The current version only covers a very small fraction of
the NeATtools. For the tools not covered yet by the tutorial, the DEMO buttons already
give some hints about typical cases of utilization. We intend to develop further those
tutorials very soon.

Chapter 1

Introduction

Since a few years, large scale biological studies produced huge amounts of data about
networks of molecular interactions (protein interactions, gene regulation, metabolic re-
actions, signal transduction). The integration of these data sets can be combined to
acquire a global view of the pieces that, altogether, contribute to the complexity of bio-
logical processes. High-throughput data is however notoriously noisy and incomplete,
and it is important to evaluate the quality of the different pieces of information that are
taken in consideration for building higher views of biological networks.

An important effort will be required to extract reliable information from the ever-
increasing ocean of high-throughput data. This will require the utilization of powerful
tools that enable us to apply statistical analysis on large graphs. For this purpose,
we developed the Network Analysis Tools (NeAT), as set of tools performing basic
operations on networks and clusters.

The tools can be used in three ways:

1. Web server interface

http://rsat.scmbb.ulb.ac.be/neat/

The Web interface gives a convenient and intuitive access to the tools, and allows
you to bring your data sets through some typical analysis work flows in order to
extract the best of it.

2. Stand-alone application

http://rsat.scmbb.ulb.ac.be/rsat/distrib/

Most of the tools are freely available to academic users, according to a licence
for non-commercial and non-military usage.

The license covers both the Regulatory Sequence Analysis Tools (RSAT) and
the Network Analysis Tools (NeAT). It can be downloaded from the RSAT Web
site.

3. Web services

7

8 CHAPTER 1. INTRODUCTION

In addition, people having computer skills can also use be same tools via a Web
services interface, in order to integrate them in automatic work-flows. To obtain
information on the Web services, connect the NeATweb server, and in the left
menu, select Information - Web services.

Chapter 2

Network visualization and
format conversion

2.1 Introduction

2.1.1 Network visualization
To help the scientists apprehending their interest network, it is sometimes very useful to
visualize them. Networks are generally represented by a set of dots (or of boxes) which
represents its nodes that are linked via lines (the edges) or arows (arcs in the case of
directed graphs). The nodes and the edges may present a label and / or a weight. The
node label is generally indicated in the node box and the edge label is often placed on
the line.

NeAT contains some facilities to represent networks. It contains its own visual-
ization software (display-graph) that will be described in the following. Moreover, it
allows the conversion of the graph into formats that may be used by some visualisation
tools like Cytoscape ([28], http://www.cytoscape.org), yED (http://www.yworks.com/products/yed/)or
VisANT ([11], http://visant.bu.edu/).

Hereafter, we describe briefly some of the major formats used for graph description.

2.1.2 Graph formats
Incompatibility between file formats is a constant problem in bioinformatics. In order
to facilitate the use of the NeAT website, most of our tools support several among the
most popular formats used to describe networks.

• The tab-delimited format is a convenient and intuitive way to encode a graph.
Each row represents an arc, and each column an attribute of this arc. The two
columns fields are the source and target nodes. If the graph is directed, the
source node is the node from which the arc leaves and the target node is the node
to which the arc arrives. Logically, in undirected graph, the columns containing
the source and the target node may be inverted. Some additional arc attributes

9

10 CHAPTER 2. NETWORK VISUALIZATION AND FORMAT CONVERSION

(weight, label, color) can be placed in pre-defined columns. Orphan nodes can
be included by specifying a source node without target. The tool Pathfinder
extends this format by supporting any number of attributes on nodes or edges as
well as the color, the label and the width of nodes and edges.

• A GML file is made up of nested key-value pairs. The most popular graph editors
support GML as input format (like Cytoscape and yED). More information on
this format can be found at http://www.infosun.fim.uni-passau.de/Graphlet/GML/.

• The DOT format is a plain text graph description language. DOT files can be
loaded in the programs of the suite GraphViz (http://www.graphviz.org/). It is
a simple way of describing graphs in a human- and computer-readable format.
Similarly to GML, DOT supports various attributes on nodes (i.e. color, width,
label).

• VisML is the XML format required by VisANT, a very light but powerful visu-
alisation tool.

• Several tools also accept adjacency matrices as input. An adjacency matrix is a
N x N table (with N the number of nodes), where a cell A[i, j] indicates the
weight of the edge between nodes i and j (or 1 if the graph is unweighted).

2.2 Visualisation of a co-expression network

2.2.1 Study case
In this demonstration, we will show you how to visualize a network using some popular
network visualization tools. This network we will study consist in the top scoring
edges of the yeast co-expression network included in the integrative database String
[35]. This undirected weighted networks contains 537 nodes representing genes and
4801 edges. An edge between two nodes means that they are co-expressed. The weight
expresses at which level both genes are co-expressed. We will explain how to display
this network with NeAT, Cytoscape, yED and VisANT. As Cytoscape and yED are not
online tools, we will only describe their utilization in the command-line section.

2.2.2 Protocol for the web server
Format conversion and layout calculation

1. In the NeATmenu, select the command format conversion / layout calculation .

In the right panel, you should now see a form entitled “convert-graph”.

2. Click on the link DEMO.

The form is now filled with a graph in the tab-delimited format, and the param-
eters have been set up to their appropriate value for the demonstration, i.e., the
network will be converted from tab-delimited to GML format, the source node
column is 1, the target column is 2 and the weight column is 3.

2.2. VISUALISATION OF A CO-EXPRESSION NETWORK 11

The option Calculate the layout of the nodes (only relevant
for GML output may also be chosen, otherwise the nodes will all be in di-
agonal and the resulting graphic will not be very instructive.

If the edges present a weight, convert-graph is able to represent the weight of
the edges by computing a color gradient proportional to edge weights and color-
ing the edges according to it. There are five different color gradients : blue, red,
green, grey and yellow to red. The darker (or the more colored) it is, the higher
the weight. Moreover convert-graph can also change the width of the edge pro-
portionnally to its weight. To this, we must choose a color gradient for the Edge
color intensity proportional to the weight and the option Edge
width proportional to the weight of the edgemust be checked
(which is automatically the case with the demonstration).

3. Click on the button GO.

The resulting graph in GML format is available as an HTML link. Right clink
on the link and save it with name string coexpression.gml.

Visualization using NeAT

1. In the Next Step pannel, click on Display the graph.

The form of display-graph is displayed. By default, the figure output format
is jpeg, change it to png which gives a better resolution. NeAT also allow the
postscript format.

2. Uncheck Calculate the layout of the nodes (mandatory for
all input format except GML) as convert-graph already computed
it.

3. Check Edge width proportional to the weight of the edges

4. Click on the GO button.

The figure is available by clicking on the HTML link. Clicking a the link leads
to a static figure representing the network.

Visualization using VisANT

1. After the step Format conversion and layout calculation, click on the Load in
VisANT

A page is displayed. Three links are available

• A link to the graph in the format you obtained it from convert-graph (here
GML).

• A link (VisANT logo) to the VisANT applet

• A link to the graph in VisML (the input format of VisANT)

12 CHAPTER 2. NETWORK VISUALIZATION AND FORMAT CONVERSION

2. Click on the logo of VisANT

The VisANT applet is loaded.

3. Accept the authentification certifate.

2.2.3 Protocol for the command-line tools
Format conversion and layout calculation

If you have installed a stand-alone version of the NeAT distribution, you can use the
programs convert-graph and display-graph on the command-line. This requires to be
familiar with the Unix shell interface. If you don’t have the stand-alone tools, you can
skip this section and read the next section (Interpretation of the results). To visualize
the networks with yED, VisANT or Cytoscape, you must of course install them on your
computer.

1. First let us download the network file string coex simple.tab from the NeAT tu-
torial download page : http://rsat.scmbb.ulb.ac.be/rsat/data/neat tuto data/

2. In this first step, we will convert the tab delimited String network that we just
downloaded into a GML file by using this command. We compute the layout of
the nodes. Moreover, we compute an edge width and an color proportional to the
weight on the edge.

convert-graph -from tab -to gml -wcol 3 -i string_coex_simple.tab
-o string_coex_simple.gml -layout -ewidth -wcol 3 -ecolors fire

Visualization using NeAT

Use the following command to create a graph using the NeAT display-graph program.

display-graph -in_format gml -out_format png -i string_coex_simple.gml
-o string_coex_simple.png -ewidth

Visualization using Cytoscape (version 2.3)

1. Open Cytoscape

2. Click on File > Import > Network... > Select

3. Select the file string coex simple.gml If the graph contains more than 500 nodes,
it will not be displayed immediately. Right click on the name of the graph file in
the Cytopanel 1 and select Create view....

Visualization using yED (version 3)

1. Open yED

2. Click on File > Import

2.2. VISUALISATION OF A CO-EXPRESSION NETWORK 13

3. Select the file string coex simple.gml

As NeAT GML converter add edge labels of the type nodeName1 nodeName2
for unweighted or unlabeled graph, you may need to remove the edge label for a
better visibility.

4. Click on one edge (random)

The edge you clicked on is now selected.

5. Press Ctrl+A

All edges are now selected.

6. In the Property view (Right of the screen), in the label part, uncheck the visible
option.

14 CHAPTER 2. NETWORK VISUALIZATION AND FORMAT CONVERSION

Chapter 3

Comparisons between networks

3.1 Introduction

Protein interaction networks have deserved a special attention for molecular biologists,
and several high-throughput methods have been developed during the last years, to
reveal either pairwise interactions between proteins (two-hybrid technology) or protein
complexes (methods relying on mass-spectrometry). The term interactome has been
defined to denote the complete set of interactions between proteins of a given organism.

Interactome data is typically represented by an un-directed graph, where each node
represents a polypeptide, and each edge an interaction between two polypeptides.

The yeast interactome was characterized by the two-hybrid method by two inde-
pendent groups, Uetz and co-workers [32], and Ito and co-workers [13], respectively.
Surprisingly, the two graphs resulting from these experiments showed a very small
intersection.

In this tutorial, we will use the program compare-graphs to analyze the interac-
tome graphs published by from Uetz and Ito, respectively.

We will first perform a detailed comparison, by merging the two graphs, and la-
belling each node according to the fact that it was found in Ito’s network, in Uetz’
network, or in both. We will then compute some statistics to estimate the significance
of the intersection between the two interactome graphs.

3.2 Computing the intersection, union and differences
between two graphs

3.2.1 Study case

In this demonstration, we will compare the networks resulting from the two first publi-
cations reporting a complete characterization of the yeast interactome, obtained using
the two-hybrid method.The first network [32] contains 865 interactions between 926
proteins.The second network [13] contains 786 interactions between 779 proteins. We

15

16 CHAPTER 3. COMPARISONS BETWEEN NETWORKS

will merge the two networks (i.e. compute their union), and label each edge accord-
ing to the fact that it is found in Ito’s network, Uetz’ network, or both. We will also
compute the statistical significance of the intersection between the two networks.

3.2.2 Protocol for the web server

1. In the NeATmenu, select the command network comparison .

In the right panel, you should now see a form entitled “compare-graphs”.

2. Click on the button DEMO.

The form is now filled with two graphs, and the parameters have been set up to
their appropriate value for the demonstration. At the top of the form, you can
read some information about the goal of the demo, and the source of the data.

3. Click on the button GO.

The computation should take a few seconds only. The result page shows you
some statistics about the comparison (see interpretation below), and a link point-
ing to the full result file.

4. Click on the link to see the full result file.

3.2.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT distribution, you can use the
program compare-graphs on the command-line. This requires to be familiar with the
Unix shell interface. If you don’t have the stand-alone tools, you can skip this section
and read the next section (Interpretation of the results).

We will now describe the use of compare-graphs as a command line tool. The
two two-hybrid datasets described in the previous section may be downloaded at the
following address http://rsat.scmbb.ulb.ac.be/rsat/data/neat tuto data/. These are the
files uetz 2001.tab and ito 2002.tab.

1. Go in the directory where the files containing the graphs to compare are located.

2. Type the following command

compare-graphs -v 1 -Q ito_2002.tab -R uetz_2001.tab -return union \
-o uetz_2001_union_ito_2002.tab

Using these options, some comparaison statistics are displayed and the results are
stored in the tab-delimited file uetz 2001 union ito 2002.tab.

In order to compute the difference or the intersection, you must change the -return
option. For example, to compute the intersection, you shoud type.

compare-graphs -v 1 -Q ito_2002.tab -R uetz_2001.tab -return intersection \
-o uetz_2001_inter_ito_2002.tab

3.2. COMPUTING THE INTERSECTION, UNION AND DIFFERENCES BETWEEN TWO GRAPHS17

3.2.4 Interpretation of the results
The program compare-graphs uses symbols R and Q respectively, to denote the two
graphs to be compared. Usually, R stands for reference, and Q for query.

In our case, R indicates Ito’s network, whereas Q indicates Uetz’ network. The two
input graphs are considered equivalent, there is no reason to consider one of them as
reference, but this does not really matter, because the statistics used for the comparison
are symmetrical,as we will see below.

Union, intersection and differences

The result file contains the union graph, in tab-delimited format. This format is very
convenient for inspecting the result, and for importing it into statistical packages (R,
Excel, . . .).

The rows starting with a semicolon (;) are comment lines. They provide you with
some information (e.g. statistics about the intersection), but they will be ignored by
graph-reading programs. The description of the result graph comes immediately after
these comment lines.

Each row corresponds to one arc, and each column specifies one attribute of the
arc.

1. source: the ID of the source node

2. target: the ID of the target node

3. label: the label of the arc. As labels, we selected the option “Weights on the
query and reference”. Since the input graphs were un-weighted, edge labels will
be used instead of weights. The label <NULL> indicates that an edge is absent
from one input network.

4. color and status: the status of the arc indicates whether it is found at the in-
tersection, or in one graph only. A color code reflects this status, as indicated
below.

• R.and.Q : arcs found at the intersection between graphs R and Q. Default
color: green.

• R.not.Q : arcs found in graph R but not in graph Q. Default color: violet.

• Q.not.R : arcs found in graph Q but not in graph R. Default color: red.

The result file contains several thousands of arcs, and we will of course not
inspect them by reading each row of this file. Instead, we can generate a drawing
in order to obtain an intuitive perception of the graph.

Sizes of the union, intersection and differences

The beginning of the result file gives us some information about the size of the
two input files, their union, intersection, and differences.

18 CHAPTER 3. COMPARISONS BETWEEN NETWORKS

; Counts of nodes and arcs
; Graph Nodes Arcs Description
; R 779 786 Reference graph
; Q 926 865 Query graph
; QvR 1359 1529 Union
; QˆR 346 122 Intersection
; Q!R 580 743 Query not reference
; R!Q 433 664 Reference not query

Statistical significance of the intersection between two graphs

The next lines of the result file give some statistics about the intersection between
the two graphs. These statistics are computed in terms of arcs.

; Significance of the number of arcs at the intersection
; Symbol Value Description Formula
; N 1359 Nodes in the union
; M 922761 Max number of arcs in the union M = N*(N-1)/2
; E(QˆR) 0.74 Expected arcs in the intersection E(QˆR) = Q*R/M
; QˆR 122 Observed arcs in the intersection
; perc_Q 14.10 Percentage of query arcs perc_Q = 100*QˆR/Q
; perc_R 15.52 Percentage of reference arcs perc_R = 100*QˆR/R
; Jac_sim 0.0798 Jaccard coefficient of similarity Jac_sim = QˆR/(QvR)
; Pval 2.5e-228 P-value of the intersection Pval=P(X >= QˆR)

A first interesting point is the maximal number of arcs (M) that can be traced
between any two nodes of the union graph. In our study case, the graph obtained
by merging Ito’s and Uetz’ data contains N = 1359 nodes. This graph is un-
directed, and there are no self-loops. The maximal number of arcs is thus M =
N ∗ (N − 1)/2 = 922, 761. This number seems huge, compared to the number
of arcs observed in either Uetz’ (AQ = 865) or Ito’s (AR = 786) graphs. This
means that these two graphs are sparse: only a very small fraction of the node
pairs are linked by an arc.

The next question is to evaluate the statistical significance of the intersection
between the two graphs. For this, we can already compute the size that would
be expected if we select two random sets of arcs of the same sizes as above
(AQ = 865, AR = 4, 038).

If the same numbers of arcs were picked up at random in the union graph, we
could estimate the probability for an arc to be found in the network R as follows:
P (R) = AR/M = 0.000852. Similarly, the probability for an arc of the union
graph to be part of the network Q is P (Q) = AQ/M = 0.000937. The proba-
bility for an arc to be found independently in two random networks of the same
sizes as R and Q is the product of these probabilities.

P (QR) = P (Q) ∗ P (R) = AR/M ·AQ/M = 7.98e− 07

The number of arcs expected by chance in the intersection is the probability
multiplied by the maximal number of arcs.

3.2. COMPUTING THE INTERSECTION, UNION AND DIFFERENCES BETWEEN TWO GRAPHS19

E(QR) = P (QR) ·M
= (AQ ·AR)/M
= 7.98e− 07 · 922761 = 0.74

Thus, at the intersection between two random sets of interaction, we would ex-
pect on the average a bit less than one interaction. It seems thus clear that the
122 interactions found at the intersection between he two published experiments
is much higher than the random expectation.

We can even go one step further, and compute the P-value of this intersection,
i.e. the probability to select at least that many interactions by chance.

The probability to observe exactly x arcs at the intersection is given by the hy-
pergeometrical distribution.

P (QR = x) =
Cx

RCQ−x
M−R

CQ
M

(3.1)

where

R is the number of arcs in the reference graph;

Q i the number of arcs in the query graph;

M is the maximal number of arcs;

x is the number of arcs at the intersection between the two graphs.

By summing this formula, we obtain the P-value of the intersection, i.e. the
probability to observe at least x arcs at the intersection.

Pval = P (QR >= x) =
min(Q,R)∑

i=x

P (X = i) =
min(Q,R)∑

i=x

Ci
RCQ−i

M−R

CQ
M

We can replace the symbols by the numbers of our study case.

Pval = P (QR >= 122)

=
min(865,786)∑

i=x

Ci
786C

865−i
922761−786

C865
922761

= 2.5e− 228

This probabilty is so small that it comes close to the limit of precision of our
program (≈ 10−321).

20 CHAPTER 3. COMPARISONS BETWEEN NETWORKS

Summary

In summary, the comparison revealed that the number of arcs found in common be-
tween the two datasets (Ito and Uetz) is highly significant, despite the apparently small
percentage of the respective graphs it represents (14.10% of Ito, and 15.52% of Uetz).

3.3 Strengths and weaknesses of the approach

3.4 Exercises
1. Using the tool the tool network randomization , generate two random graphs of

1000 nodes and 1000 arcs each (you will need to store these random networks on
your hard drive). Use the tool network comparison to compare the two random
graphs. Discuss the result, including the following questions:

(a) What is the size of the intersection ? Does it correspond to the expected
value ?

(b) Which P-value do you obtain ? How do you interpret this P-value ?

2. Randomize Ito’s network with the tool network randomization , and compare
this randomized graph with Uetz’ network. Discuss the result in the same way
as for the previous exercise.

3.5 Troubleshooting
1. The P-value of the intersection between two graphs is 0. Does it mean that it is

impossible to have such an intersection by chance alone ?

No. Any intersection that you observe in practice might occur by chance, but the
limit of precision for the hypergeometric P-value is ≈ 10−321. Thus, a value of
0 can be interpreted as Pval < 10−321.

2. The web server indicates that the result will appear, and after a few minutes my
browser displays a message “No response the server”.

How big are the two graphs that you are comparing ? In principle, compare-
graphs can treat large graphs in a short time, but if your graphs are very large
(e.g. several hundreds of thousands of arcs), the processing time may exceed
the patience of your browser. In such case, you should consider either to install
the stand-alone version of NeATon your computer, or write a script that uses
NeATvia their Web services interface.

Chapter 4

Node degree statistics

4.1 Introduction
In a graph, the degree k of a node is the number of edges connected to this node. If the
graph is directed, we can make a distinction between the in-degree (the number input
arcs) and the out-degree (number of output arcs). In this case, the degree of the node
consists in the sum of the in-degree and of the out-degree of this node.

Different nodes having different degrees, this variability is characterized by the
degree distribution function P (k), which gives the probability that a node has exactly
k edges, or, in other words gives the observed frequency of a node of degree k.

Scale-free graphs were first described by Barabasi based on the study of the web
connectivity, followed by several different biological networks [14].

A graph is scale-free if the distribution of the vertex degree (k) follows a power-law
distribution of the form P (k) k−γ .

The main property of such graphs is that it should have on one hand some highly
connected nodes, called hubs, which are central to the network topology, and keep the
network together and on the other hand a lot of poorly connected nodes linked to the
hubs.

In the following, we will check if this scale free property also applies to the two-
hybrid network described by Uetz et al [32] by computing the degree of each node and
plotting the node degree distribution of the graph.

4.2 Analysis of the node degree distribution of a biolog-
ical network

4.2.1 Study case
In this demonstration, we will analyze the node degree distribution of the first published
yeast protein interaction network. This network is the first attemp to study the yeast
interactome using the two-hybrid method and contains 865 interactions between 926
proteins [32].

21

22 CHAPTER 4. NODE DEGREE STATISTICS

4.2.2 Protocol for the web server
1. In the NeATmenu, select the command node topology statistics .

In the right panel, you should now see a form entitled “graph-topology”.

2. Click on the button DEMO.

The form is now filled with a graph in the tab-delimited format, and the param-
eters have been set up to their appropriate value for the demonstration, i.e., the
degree of all nodes will be computed. At the top of the form, you can read some
information about the goal of the demo, and the source of the data.

As this is a protein - protein interaction graph, we can consider that an interaction
between a protein A with a protein B corresponds to an interaction between
protein B and protein A. The graph is thus not directed.

You can uncheck the compution of the closeness and betweenness as these statis-
tics will not be discussed in this section and as this process will increase the
computation time.

3. Click on the button GO.

The computation should take less than one minute. On one hand, the result page
displays a link to the result file and on the other hand the graphics and raw data
of the node degree distribution are also available. These will be discussed in the
Interpretation of the results section.

4.2.3 Protocol for the command-line tools
If you have installed a stand-alone version of the NeAT distribution, you can use the
program graph-topology on the command-line. This requires to be familiar with the
Unix shell interface. If you don’t have the stand-alone tools, you can skip this section
and read the next section (Interpretation of the results).

We will now describe the use of graph-topology as a command line tool. The
two two-hybrid dataset described in the previous section may be downloaded at the
following address http://rsat.scmbb.ulb.ac.be/rsat/data/neat tuto data/. This is the file
uetz 2001.tab.

1. The first step consist in applying graph-topology on the two-hybrid dataset. To
this, go into the directory where you downloaded the file uetz 2001.tab and use
this command.

graph-topology -v 1 -i uetz_2001.tab -return degree -all -o uetz_2001_degrees.tab

The file uetz 2001 degrees.tab is created and contains the degree of each node
of the Uetz et al data set.

2. In the second step, we will study the degree distribution of the nodes. To this,
we use the program classfreq from the RSAT suite that compute the distribution
of a set of number. As the graph we are working with is undirected, we will only

4.2. ANALYSIS OF THE NODE DEGREE DISTRIBUTION OF A BIOLOGICAL NETWORK23

compute this degree distribution for the global degree of the nodes which is the
second column of the file uetz 2001 degrees.tab obtained in the previous step.

classfreq -i uetz_2001_degrees.tab -v 1 -col 2 -ci 1 -o uetz_2001_degrees_freq.tab

3. Finally, we will display the distribution graph in the PNG format in order to
visualize the degree distribution and determine if it has a scale free behaviour.
The program XYgraph from RSA-tools will be used for this purpose. Note that
we could use other tools like Microsoft Excel or R . The results will be stored
in the file uetz 2001 degrees freq.png that you can open with any visualization
tool.

XYgraph -i uetz_2001_degrees_freq.tab \
-title ’Global node degree distribution for Uetz et al (2001) interaction graph’ \
-xcol 2 -ycol 4,6 -xleg1 Degree -lines \
-yleg1 ’Number of nodes’ -legend -header -format png \
-o uetz_2001_degrees_freq.png

4.2.4 Interpretation of the results
graph-topology result file

Open the resulting file produced by graph-topology . According to the requested level
of verbosity (-v # option), the file begins with some lines starting with the ’#’ or
’;’ symbols that contains some information about the graph and the description of the
columns.

The results consists in a two columns data set.

1. Node name

2. Global degree

Note that if you used the ’-directed’ option, the resulting file contains 3 more
columns specifying the in-degree, the out-degree and whether the node is only a source
node or a target node.

Node degree distribution

Let us first have a look at the node degree distribution data file produced by the class-
freq program (raw data). This file is a tab-delimited file containing 9 columns. Each
line consists in a value interval. In our case, the value is the degree of the nodes.

1. Minimal value of the interval

2. Maximal value of the interval

3. Central value of the interval

4. Frequency : Number of elements in this class interval (number of nodes having
a degree comprised betwee the minimal and the maximal values.

24 CHAPTER 4. NODE DEGREE STATISTICS

5. Cumulative frequency.

6. Inverse cumulative frequency

7. Relative frequency : number of elements in this class over the total number of
elements

8. Relative cumulative frequency

9. Inverse relative cumulative frequency

The first result line contains the distribution results for the nodes having only one
neighbour (i.e. degree comprised between 1 and 2), from it we can see that 577 over
926, i.e., 62% of the nodes have a degree of one. Moreover, about 90% of the nodes
have a degree lower than 4. This is indicative of the scale-free nature of the interaction
network.

The figure best illustrates the scale-freeness of the graph. When looking at the
graphical representation of this distribution, we can see two curves. The blue curve
represents the absolute frequency and the green curve the inverse cumulative frequency.
The exponential decrease of both curves shows that there are a lot more nodes poorly
connected than highly connected (hubs). The Uetz graph thus presents a scale free
behaviour.

Chapter 5

Study of the neighborhood of
the nodes

5.1 Introduction

In a graph, the neighbours of a node consist in the set of nodes that are connected to
this node up to a certain distance, i.e., the number of steps between the source node
and its neighbours. In weighted graphs, one can also consider the neighbours up to a
certain maximal weight.

In the following, we will refer to the node for which we search the neighbours the
seed node.

According to the type of graph, it might be interesting to retrieve the neighbours of
the nodes in a graph.

For example, in protein-protein interaction network, the function of the neighbours
of a protein whose biological role is unknown might give insights in the function of
the protein. Moreover, in interaction graphs, if a group of neighbours have similar
biological functions, they are likely to form a structural complex.

In co-regulation networks, where each node is a gene and an edge between two
genes means that those genes are co-regulated (i.e. co-repressed and co-expressed),
exploring the neighbours of the nodes may help in the discovery of new regulons.

In the following, we will illustrate the study of nodes neighborhood by looking for
neighbours of some orphan proteins (i.e. protein of unknown function) in a protein
protein interaction network. We will then look if the neighbours of these proteins
present similar functions.

25

26 CHAPTER 5. STUDY OF THE NEIGHBORHOOD OF THE NODES

5.2 Analysis of the neighbours of orphan nodes in an
interaction protein network

5.2.1 Study case
In this demonstration, we will analyze the neighbours of the orphan nodes of the
Gavin et al (2006) interaction data set. These interaction data were obtained by co-
immunoprecipitation followed by a mass spectrometry experiment in order to discover
structural protein complexes. [10]. This network contains 6531 interactions between
1430 proteins.

We will then compare these groups of neighbours with functionnal classes of pro-
teins annotated in the MIPS [23] in order to detect if the groups of neighbours present
a significatively high number of co-regulated proteins.

5.2.2 Protocol for the web server
1. In the NeATmenu, select the command get node neighborhood .

In the right panel, you should now see a form entitled “graph-neighbours”.

2. Go on the demo dataset download web page.http://rsat.scmbb.ulb.ac.be/rsat/data/neat tuto data/
and download the files gavin 2006 names.tab, orphan gavin.tab and mips name class description.tab
on your computer.

3. In the Upload graph from file text area, load the file gavin 2006 names.tab you
just downloaded.

4. Uncheck Include each node in its neighborhood (with a distance
of zero)

5. Check the radio-button Node selection in the seed node part of the form

6. In the Upload seed nodes from file text area, load the file orphan gavin.tab.tab
you just downloaded.

7. Click on the button GO.

The computation should take less than one minute.

The result page should display the results in the tab-delimited or HTML format.
These files will be described in the section Interpretation of the results

8. We will now see if the different groups of neighbours contain a significantly high
number of proteins of similar function. To this, we will compare the groups of
neighbours we just obtained with annotated groups of proteins, e.g., the genes
annotated according to the gene ontology [4] or, in this example, according to
the functionnal classes of the MIPS [23]. In the Next step pannel, click on
the button Compare the groups of neighbours.

You are redirected to the form of another program compare-classes that allows
to compare two class files (the query file and the reference file). Each class of a

5.2. ANALYSIS OF THE NEIGHBOURS OF ORPHAN NODES IN AN INTERACTION PROTEIN NETWORK27

query file is compared to each class of a reference file. The number of common
elements is reported, as well as the probability to observe at least this number
of common elements by chance alone. The query classes are already loaded
and consist in the different groups of neighbours we discovered previously with
graph-neighbours .

9. In the Upload reference classes from file text area, load the file mips name class description.tab
downloaded in the first part of this tutorial. The classes files are two column files,
the first column contains the elements and the second column the class to which
the elements belong. Elements may belong to more than one class.

10. The default paramaters are sufficient. We will only keep the comparison present-
ing a significance higher than 0.

11. Click on the button GO.

12. You obtain the links to the result file in the tab-delimited format or in the HTML
format. The obtained results will be described in the next section.

5.2.3 Protocol for the command-line tools
If you have installed a stand-alone version of the NeAT distribution, you can use the
program graph-neighbours on the command-line. This requires to be familiar with
the Unix shell interface. If you don’t have the stand-alone tools, you can skip this
section and read the next section (Interpretation of the results).

We will now describe the use of graph-neighbours as a command line tool. The
Gavin et al (2006) [10] co-immunoprecipitation dataset described in the previous sec-
tion and the other files necessary for this tutorial may be downloaded at the following
address http://rsat.scmbb.ulb.ac.be/rsat/data/neat tuto data/ (gavin 2006 names.tab, or-
phan gavin.tab and mips name class description.tab).

1. The first step consist in applying graph-neighbours on the co-immunoprecipitation
dataset. To this, go into the directory where you downloaded the files gavin 2006 names.tab,
orphan gavin.tab and use this command.

graph-neighbours -v 1 -i gavin_2006_names.tab \
-seedf orphan_gavin.tab \
-o gavin_2006_orphan_neighbours_1.tab

The file gavin 2006 orphan neighbours 1.tab is created and contains for each
node of the seed file the list of its direct neighbours, i.e., for each protein, the list
of proteins that co-precipitated with it.

2. In the second step, we will compare these groups of neighbours to different
groups of annotated proteins in order to discover if the groups of neighbours do
contain a significatively high number of proteins of similar functions. This will
give insights into the function of the orphans proteins used as seed nodes in the
first step. To this, we will use the RSAT compare-classes program that allows to

28 CHAPTER 5. STUDY OF THE NEIGHBORHOOD OF THE NODES

compare two class files (the query file and the reference file) (see previous sec-
tion or the RSAT tutorial for a more complete description of compare-classes).
Use the following command to compare the two files.

compare-classes -v 1 \
-q gavin_2006_orphan_neighbours_1.tab -r mips_name_class_description.tab \
-sort sig -return proba,occ,jac_sim \
-o gavin_2006_orphan_neighbours_1_cc_mips_functionnal_classes.tab -lth sig 0

We obtain a file gavin 2006 orphan neighbours 1 cc mips functionnal classes.tab con-
taining the significant comparaison results. We will discuss it in the following section
(interpretation of the results).

5.2.4 Interpretation of the results
graph-neighbours result file

According to the requested level of verbosity, the result file may first contain several
lines (starting with “#” or “;”). These deliver some information about the analysed
graph (number of nodes, edges, seed nodes, ...). The results are then displayed in four
columns.

1. Name of the neighbour.

2. Name of the seed node (for which the neighbours are seeked in the graph).

3. Distance between the seed node and its neighbour (number of steps).

4. The last column, only relevant for directed graph, indicate whether the arc be-
tween the seed node and its neighbour is an out- or an in-going arc.

This file can be considered as a class file (see above for a more complete descrip-
tion) with the name of the neighbour being the member (first column) and the name of
the seed node, the name of the class (second column).

compare-classes result file

The result of the comparaison between the groups of neighbours and the MIPS anno-
tated classes are displayed in a multi-column file sorted by decreasing order of signifi-
cance. When looking at the HTML version of the file, you may click on the header on
the column to sort the table according to this field.

Each line displays the comparaison between a MIPS annotated class (reference
class) and a group of neighbours (query class). What we want to know is if there is
a significatively high number of members of the same MIPS class in a given group of
neighours.

• ref : Name of the MIPS functionnal class.

• query : Name of the group of neighbours (seed node).

5.2. ANALYSIS OF THE NEIGHBOURS OF ORPHAN NODES IN AN INTERACTION PROTEIN NETWORK29

• R : Size of the reference class (number of members in this MIPS class).

• Q : Size of the query class (number of neighbour for this seed node).

• QR : Intersection size between the group of neighbours and the functionnal class.

• QvR : Union size between the group of neighbours and the functionnal class.

• R!Q : Elements that are in the functionnal class but not in the groups of neigh-
bours.

• Q!R : Elements that are not in the functionnal class but are in the groups of
neighbours.

• !Q!R : Elements that are not in the functionnal class nor in the groups of neigh-
bours.

• P-val : P-value of the comparaison, propability (according to the hypergeometric
law) to be wrong when claimin that there is a significatively high number of
proteins of the same class in the group of neighbours.

• E-val : E-value of the comparaison. P-value multiplied by the total number of
comparaisons. This value corresponds to the estimated number of false positives
for a given P-value threshold.

• sig : Significance of the comparaison. This correpsonds to −log10(E − val).
This index gives an intuitive perception of the exceptionality of the common
elements : a negative significance indicates that the common matches are likely
to come by chance alone, a positive value that they are significant.

Considering the file, we can observe that 7 seed nodes (on the 46) have a group
of neighbours presenting a similar function. For example, 9 out of the 10 neighbours
of the Yil161w protein (interacting with this protein) have their function related to
ribosome biogenesis and 8 out of 10 neigbours are located in the cytoplasm. This may
indicate that this protein may also be implied in ribosome biogenesis

30 CHAPTER 5. STUDY OF THE NEIGHBORHOOD OF THE NODES

Chapter 6

Graph clustering

6.1 Introduction

Abruptely, graph clustering consists in grouping the nodes of the networks into differ-
ent classes or clusters. The groupment of the nodes can be done according to various
different criteria, i.e., nodes of the same color, nodes of the same type, etc. Commonly,
nodes are grouped according to the fact they present a relatively high number of con-
nections between them compared to the number of connections with the other nodes
composing the network. In the following, we will only consider clustering methods
aiming at retrieving highly interconnected groups of nodes in a network.

In bioinformatics, a lot of clustering approaches have already been applied to var-
ious types of network, e.g. protein-protein interaction network (see among others
[31, 16, 19]), metabolic graphs [9], biological sequences ([7, 21]), etc.

Clustering of protein interaction network may be of valuable help in order to re-
trieve in a large graphs real biological complexes in the cell. Moreover, if in the de-
tected complexes some of proteins are of unknown function but the rest of the proteins
present all present a similar function, this may give insights in the function of the un-
known protein.

In the following, we will apply different graph based clustering approaches on the
yeast protein - protein interaction network published by Gavin et al [10] and obtained
by multiple co-immunoprecipitation experiments with each yeast protein used as bait
followed by a mass spectrometry procedure to identify all the proteins that precipitated
with the baits.

The clustering algorithms we will apply are the MCL [33, 7] and RNSC [16].
Hereafter, follows a short description of both clustering algorithms copied from [2].

The Markov Cluster algorithm (MCL) simulates a flow on the graph by calculating
successive powers of the associated adjacency matrix. At each iteration, an inflation
step is applied to enhance the contrast between regions of strong or weak flow in the
graph. The process converges towards a partition of the graph, with a set of high-flow
regions (the clusters) separated by boundaries with no flow. The value of the inflation
parameter strongly influences the number of clusters.

31

32 CHAPTER 6. GRAPH CLUSTERING

The second algorithm, Restricted Neighborhood Search Clustering (RNSC), is a
cost-based local search algorithm that explores the solution space to minimize a cost
function, calculated according to the numbers of intra-cluster and inter-cluster edges.
Starting from an initial random solution, RNSC iteratively moves a vertex from one
cluster to another if this move reduces the general cost. When a (user-specified) number
of moves has been reached without decreasing the cost function, the program ends up.

In order to dispose of a negative control, we advice the reader to read the next
chapter about graph randomization and alteration.

6.2 Network clustering comparison

6.2.1 Study case

In this demonstration, we will compare the performances of two graph based clustering
algorithms MCL and RNSC . First, we will apply them to the protein - protein inter-
action described by Gavin et al [10], secondly we will compare the resulting clusters
to the complexes annotated for the yeast in the MIPS database [23].

Note that as the interaction network and the MIPS complexes are different dataset
(i.e. different proteins), the performances of the algorithm will be rather low.

To run this tutorial on the command line, you need to have both RNSC and MCL
installed on your computer. You can find the MCL source code on http://micans.org/mcl/
and RNSC on http://rsat.scmbb.ulb.ac.be/ rsat/rnsc/rnsc rewritten compiled32.zip.

6.2.2 Protocol for the web server

Dataset download

Go on the NeAT demo dataset web page (http://rsat.scmbb.ulb.ac.be/rsat/data/neat tuto data/)
and download the MIPS complexes (mips complexes.tab)..

Network clustering with MCL

1. In the NeATleft menu, select the command graph-based clustering (MCL) .

In the right panel, you should now see a form entitled “MCL”.

2. Click on the button DEMO.

The form is now filled with the Gavin co-immunoprecipitation protein interac-
tion network graph in the tab-delimited format, and the parameters have been set
up to their appropriate value for the demonstration, i.e., the inflation value (the
MCL main parameter) is set to 1.8, the optimal value for MCL protein interac-
tion network clustering [2].

The inflation acts mainly on the number of clusters resulting from the cluster-
ing, i.e., by increasing the inflation, you will obtain a larger number of smaller
clusters.

6.2. NETWORK CLUSTERING COMPARISON 33

Note that MCL accepts weighted networks (which is not the case here), a higher
weight on an edge will reinforce the strength of the link between two nodes.

3. Click on the button GO.

The computation should take less than one minute. On one hand, the result page
displays a link to the result file and on the other hand a graphic showing the size
distribution of the obtained complexes is also available. These will be discussed
in the Interpretation of the results section.

4. Save the resulting file under the name gavin 2006 mcl inf 1.8 clusters.tab by
right clicking on the resulting file and choosing Save as

Network clustering with RNSC

1. In the NeATleft menu, select the command graph-based clustering (RNSC) .

In the right panel, you should now see a form entitled “RNSC”.

2. Click on the button DEMO.

The form is now filled with the Gavin co-immunoprecipitation protein interac-
tion network graph in the tab-delimited format, and the parameters have been
set up to their appropriate value for the demonstration, i.e., the numerous RNSC
parameters are set to the optimal values for RNSC protein interaction network
clustering determined in [2]. However, in this study, we found that the RNSC
performances were not strongly affected by the parameters values.

Note that, unlike MCL, RNSC does not accept weighted networks.

3. Click on the button GO.

The computation should take less than one minute. On one hand, the result page
displays a link to the result file and on the other hand a graphic showing the size
distribution of the obtained complexes is also avaible. These will be discussed in
the Interpretation of the results section.

4. Save the resulting file under the name gavin 2006 rnsc clusters.tab by right
clicking on the resulting file and choosing Save as

Clustering quality assessment

In the following, we will only describe the procedure to quantify the performances of
the clustering algorithms by comparing the MCL obtained clusters to the complexes
annotated in the MIPS database. You will thus have to redo this whole section with the
RNSC clustering results.

1. In the NeATleft menu, select the command Compare classes/clusters .

In the right panel, you should now see a form entitled “compare-classes”. This
program will build a contigency table, i.e., a table where each line represents the
annotated complexes and each column the clusters of highly connected proteins.
This matrix will then be used to compute quality statistics.

34 CHAPTER 6. GRAPH CLUSTERING

2. In the “Upload query classes from file” menu, select the file gavin 2006 mcl inf 1.8 clusters.tab
we just computed.

3. In the “Upload reference classes from file” menu, select the file mips complexes.tab
we just downloaded.

4. Select “Matrix file” as output format

5. Click on the button GO.

6. The contigency table (see the resulting links as text or HTML file) can now
be used in the next process by clicking on the button contingency table
statistics.

In the right panel, you should now see a form entitled “contingency-stats”. This
program will compute the statistics described in [2], namely the PPV , the sensi-
tivity and the Separation statistics in order to estimate the quality of a clustering
results to predict the complexes annotated in the MIPS.

7. Click on the button GO.

The resulting statistics will be described in the following section Interpretation of
the results, save them under the name gavin 2006 mcl inf 1.8 vs mips stats.tab.

Re-do the whole procedure with the file obtained with RNSC and save the
contingency-stats output under the name gavin 2006 rnsc vs mips stats.tab.

6.2.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT distribution, you can also use
all the programs on the command-line. This requires to be familiar with the Unix shell
interface. If you do not have the stand-alone tools, you can skip this section and read
the next section (Interpretation of the results).

The explanation of the parameters used for RNSC and MCL in this approach are
described in the Web server section of this chapter.

We will now describe the use of RNSC , MCL , compare-classes , convert-classes ,
convert-graph and contigency-stats as command line tools. As a preliminary step, go
on the NeAT demo dataset web page (http://rsat.scmbb.ulb.ac.be/rsat/data/neat tuto data/)
and download the MIPS complexes (mips complexes names.tab) and the Gavin inter-
action dataset (gavin 2006 names.tab).

Network clustering with MCL

1. The first step consist in applying MCL on the co-immunoprecipitation dataset.
To this, go into the directory where you downloaded the file uetz 2001.tab and
use this command.

mcl gavin_2006_names.tab -I 1.8 --abc -o gavin_2006_mcl_inf_1.8_clusters.mcl

6.2. NETWORK CLUSTERING COMPARISON 35

The file gavin 2006 mcl inf 1.8 clusters.mcl is created and contains the clusters
of highly connected node in the interaction dataset. However, this file is for-
matted in the MCL format that is not usable by the NeAT / RSAT tools. We
will thus use the program convert-classes to convert this file in a tab delimited
format with the following command.

convert-classes -i gavin_2006_mcl_inf_1.8_clusters.mcl \
-o gavin_2006_mcl_inf_1.8_clusters.tab \
-from mcl -to tab

The resulting file is a two column file containing for each node (first column) the
cluster to which it belongs (second column).

Network clustering with RNSC

1. The first step will consist in converting the tab delimited format in which the pro-
tein interaction dataset is encoded into a format readable by the RNSC cluster-
ing algorithm. To this, we will use the convert-graph programwith the following
command.

convert-graph -from tab -to rnsc \
-i gavin_2006_names.tab -o gavin_2006_rnsc

Two files are created, gavin 2006 rnsc.rnsc and gavin 2006 rnsc node names.rnsc.
The first one contains the graph in itself, under the format of an adjacency list.
However, each node is identified by a number. The protein names corresponding
to the nodes identifiers are encoded in the second file (two column tab delimited
file).

2. We can now apply RNSC on the network with the following command.

rnsc -g gavin_2006_rnsc.rnsc -t 50 -T 1 -n 15 -N 15 -e 3 -D 50 \
-d 3 -o gavin_2006_rnsc_clusters.rnsc

The file gavin 2006 rnsc clusters.rnsc is created and contains the clusters of
highly connected node in the interaction dataset. However, this file is format-
ted in the RNSC format that is not usable by the NeAT / RSAT tools. We will
thus use the program convert-classes to convert this file in a tab delimited format
with the following command.

convert-classes -i gavin_2006_rnsc_clusters.rnsc \
-o gavin_2006_rnsc_clusters.tab \
-from rnsc -to tab \
-names gavin_2006_rnsc_node_names.rnsc

The resulting file is a two column file containing for each node (first column) the
cluster to which it belongs (second column).

36 CHAPTER 6. GRAPH CLUSTERING

Assessing clustering quality

In this section, we will describe how to build a contingency table by comparing the
clusters extracted from the networks by MCL and RNSC to annotated complexes and
the way to compute statistics on this contingency-table.

We will only describe the procedure for the MCL results. You should redo this
section for the RNSC clustering results.

1. The program compare-classes can build (among other things) a contingency
table, i.e., a table where each line represents the annotated complexes and each
column the clusters of highly connected proteins. This table will then be used to
compute quality statistics.

compare-classes -q gavin_2006_inf_1.8.tab \
-r mips_complexes_names.tab -matrix QR \
-o gavin_2006_inf_1.8_cc_complexes_matrix.tab

The file gavin 2006 inf 1.8 cc complexes matrix.tab now contains a contigency
table in a tab delimited format.

2. We can now study the quality of the clustering with the contingency-stats tool
that was used in [2] to computed standard evaluation statistics like the PPV ,
sensitivity and the accuracy that will be precisely described in the following.

contingency-stats -i gavin_2006_inf_1.8_cc_complexes_matrix.tab \
-o gavin_2006_mcl_inf_1.8_vs_mips_stats.tab

Re-do this section with the gavin 2006 rnsc clusters.rnsc to obtain a file called
gavin 2006 rnsc vs mips stats.tab.

6.2.4 Interpretation of the results

Files description

Contingency table As already explained in a previous section, having n MIPS com-
plexes and m clusters, the contingency table T is a n·m matrix where row i corresponds
to the ith annotated complex, and column j to the jth cluster. The value of a cell Ti,j

indicates the number of proteins found in common between complex i and cluster j.
The clustering quality will be evaluated from this table by calculating the Sensitiv-

ity (Sn), the Positive predictive value (PPV), the row wise separation (Sepr) and the
cluster separation (Sepc).

Contingency table metrics A list of metrics and their value. These will be described
in the next section.

6.2. NETWORK CLUSTERING COMPARISON 37

Metrics description

Sensitivity, Positive predictive value and geometric accuracy For each complex,
we can calculate a sensitivity value. This corresponds to the maximal fraction of protein
of a complex that are attributed by a clustering algorithm to the same cluster. Sn
measures how well proteins belonging to the same complex are grouped within the
same cluster.

Sni. =
maxi.(Tij)

Ni

where Ni corresponds to the size of the complex.
Moreover, for each cluster j, we calculated the Positive Predictive Value (PPV)

which corresponds to the maximal fraction of a cluster belonging to the same complex.
This reflects the ability of this cluster to detect one complex.

PPV.j =
max.j(Tij)

Mj

where Mj corresponds to the cluster size.
To summarize these values at the level of the confusion table, we calculated the

average of these values. First, we calculated their classical mean by averaging all the
PPV.j and Sni. values. We also calculated a weighted mean where the clusters and
complexes have a weight proportional to their relative size on the the calculation of the
mean.

Sn =
∑n

i=1 Sni.

n

PPV =

∑m
j=1 PPV.j

m

Snw =
∑n

i=1 NiSni.∑n
i=1 Ni

PPVw =

∑m
j=1 MjPPV.j∑m

j=1 Mj

Sensitivity and PPV reflect two contradictory tendencies of the clustering. Sn
increases when all the proteins of the same complex are grouped in the same cluster
and PPV decreases when proteins coming from different complexes are grouped in
the same cluster. If all the proteins of the network are grouped in the same cluster,
we maximize the Sn but the PPV is almost 0. On the other hand, if each protein is
placed in a different cluster, the PPV is maximized but the sensitivity is very low. A
compromise must be found between these two cases by using another statistics. We
defined the geometric accuracy as the geometrical mean of the PPV and the Sn.

Accg =
√

PPV · Sn

38 CHAPTER 6. GRAPH CLUSTERING

Separation We also defined another metrics called Separation (Sep). High Sep val-
ues indicated a high bidirectionnal correspondance between a cluster and a complex.

The row-wise separation estimates how a complex is isolated from the others. Its
maximal value is 1 if this correspondance is perfect, i.e., when all the protein of a
complex are grouped in one cluster and if this cluster does not contain any other protein.
This maximal value may also be reached when the complex is separated between many
clusters containing only members of the complex.

Sepri.
=

m∑
j=1

(
Ti,j∑m

j=1 Ti,j
· Ti,j∑n

i=1 Ti,j
)

The column-wise separation indicates how well a cluster isolates one or more com-
plex from the other clusters. The maximal value 1 indicates that a cluster contains all
the elements of one or more complexes.

Sepc.j
=

n∑
i=1

(
Ti,j∑m

j=1 Ti,j
· Ti,j∑n

i=1 Ti,j
)

As for the sensitivity and the PPV , for each clustering result, all values of Sepc.j

and Sepri. are averaged over all clusters and all complexes. We then calculate a global
separation value by calculating the geometrical mean of the average row wise separa-
tion and of the average column wise separation.

Sep =
√

Sepc · Sepr

Score comparaison

In the following, we can observe the statistics described in the previous paragraph
computed for the clustering results of RNSC and MCL .

We can observe that MCL seems to produce slightly more valuable results as

1. The unweighted sensitivity is a bit higher for MCL than for RNSC and the
weighted sensitivity is much higher.

2. The PPV is a only bit lower for MCL than for RNSC .

These results might certainly be explained by the large number of clusters found
by RNSC compared to MCL . Indeed, the PPV increases and the sensitivity
decreases with the number of a clusters. We can observe the same tendencies for
the other metrics.

3. Global metrics (accuracy and separation) are generally higher for MCL than for
RNSC

6.2. NETWORK CLUSTERING COMPARISON 39

metrics RNSC MCL
ncol 470 189
nrow 220 220
min 0 0
max 18 27
mean 0.0086 0.0214
sum 889 889
Sn 0.603 0.652
PPV 0.424 0.472
acc 0.513 0.562
acc g 0.505 0.555
Sn w 0.622 0.767
PPV w 0.642 0.549
acc w 0.632 0.658
acc g w 0.632 0.649
sep 0.303 0.353
sep c 0.207 0.381
sep r 0.443 0.327

Remark: The following table was generated using the RSAT program compare-
scores , see the help of this command line tool for more information

40 CHAPTER 6. GRAPH CLUSTERING

Chapter 7

Influence of graph alteration
and randomization on clustering

7.1 Introduction
Although negative controls and method evaluation are crucial points to the experimen-
tal biologist, this is far from being the same in bioinformatics where, too often, no
negative control is associated to the predictions, so that one cannot estimate the proba-
bility of these predictions to biogically valid.

For this reason, in NeAT we developped programs allowing to randomize and to add
some specified levels of noise to networks. This allows the user to apply the techniques
used to find relevant results on networks where there is less or no signal and thus were
no interesting result should emerge.

NeAT programs are able to generate randomized networks according to three meth-
ods.

1. Node degree conservation : this approach consists in shuffling the edges, each
node keeping the same number of neighbors as in the original graph.

2. Node degree distribution conservation : in which the global distribution of the
node degree is conserved but each node presents a different degree than in the
original graph.

3. Erdos-Renyi randomization : where edges are distributed between pairs of nodes
with equal probability.

7.2 Quantitative assessment of a clustering algorithm

7.2.1 Study case
In this demonstration, we will use the approach developped in [2] where we evaluated
the performances of different graph clustering algorithms. Graph clustering algorithms

41

42CHAPTER 7. INFLUENCE OF GRAPH ALTERATION AND RANDOMIZATION ON CLUSTERING

allow to retrieve in a graph the groups of nodes that contain more connections between
them than with the rest of the nodes of the graph. Clustering algorithms are often
used in biology in order to extract coherent groups of nodes from networks (complexes
detection (e.g. see [29, 19, 2, 24]), protein families detection [7], co-expressed genes
detection in co-expression networks (e.g see [20]), . . .). The NeAT web server proposes
the MCL (Markov Cluster algorithm) clustering algorithm developped by Stijn van
Dongen [33, 7]. To follow the command-line tools instructions, you should have MCL
installed on your computer (available at http://micans.org/mcl/).

MCL simulates a flow on the graph by calculating successive powers of the asso-
ciated adjacency matrix. At each iteration, an inflation step is applied to enhance the
contrast between regions of strong or weak flow in the graph. The process converges
towards a partition of the graph, with a set of high-flow regions (the clusters) separated
by boundaries with no flow. The value of the inflation parameter strongly influences
the number of clusters. According to [2], the optimal inflation value for clustering
protein interaction networks is 1.8.

We will use an artificial interaction network created from the complexes annotated
in the MIPS database by creating an edge between all the nodes belonging to the same
complex [23]. This network contains 12262 edges between 1095 nodes. We will then
use the MCL clustering algorithm on this network, on a little altered network, on a
highly altered network and finally on a randomized network.

We will then compare these clusters to the MIPS complexes and estimate how well
MCL can retrieve protein complexes from a protein-protein interaction and the influ-
ence of the noise on the results.

In this example, we will only use random alteration, i.e., the edges that are removed
are randomly chosen. This is done to mimick what happens really in biological experi-
ments where some inter-relationships between the nodes (genes, proteins, metabolites,
. . .) may not be discovered (false negatives) or are erroneously discovered (false pos-
itives). However the alter-graph program also allows to alterate the network with
targeted attack on user-selected nodes. In their study, Spirin and Mirny [31] showed
the affect of node targeted attacks on clustering results.

7.2.2 Protocol for the web server
Dataset download

Go on the demo dataset web page.http://rsat.scmbb.ulb.ac.be/rsat/data/neat tuto data/
and download the MIPS complex network file (complexes rm 00 ad 00.tab) and the
complexes (mips complexes.tab).

Network alteration

1. In the NeATmenu, select the command network alteration .

2. In the Upload graph from file text area, load the file complexes rm 00 ad 00.tab
containing the MIPS complexes network that you just downloaded.

3. In the edges to add text area, enter 10%.

7.2. QUANTITATIVE ASSESSMENT OF A CLUSTERING ALGORITHM 43

4. In the edges to remove text area, enter 10%.

5. Click on the button GO.

6. Right click on the resulting file and save it with name complexes rm 10 ad 10.tab.

Re-do the this alteration procedure using 50% of edges removal and 100% of
edges addition. Save the resulting file with name complexes rm 50 ad 100.tab.

Network randomization

1. In the NeATmenu, select the command network randomization .

2. In the Upload graph from file text area, load the file complexes rm 00 ad 00.tab.

3. Select the Node degree conservation randomization type.

4. Click on the button GO.

5. Right click on the resulting file and save with name complexes rm 00 ad 00 random.tab.

Networks clustering and clustering assessment

1. In the NeATmenu, select the command graph-based clustering MCL .

2. In the Upload graph from file text area, load the file complexes rm 00 ad 00.tab.

3. Click on the button GO. You should now obtain a link to the clustering results
and the distribution of the sizes of the different clusters.

4. In the Next step pannel, click on the button Compare these clusters to other
clusters.

5. In the Upload reference classes from file text area, load the mips complexes.tab
file.

6. Choose the matrix file output format

7. Click on the button GO. You now obtain a contingency table, i.e, a table with
N rows and M columns (N being the number of MIPS complexes and M , the
number of clusters). Each cell contains the number of protein common to one
complex and one cluster.

8. To calculate some statistics on this contingency table, click on the contingency-table
statistics button in the Next step pannel.

9. The contingency-stats form appears. As the contingency table is already up-
loaded, just lick on the GO button.

10. Save the resulting file under name contigency stats rm 00 ad 00.tab

Repeat these steps for complexes rm 10 ad 10.tab, complexes rm 50 ad 100.tab
and complexes rm 00 ad 00 random.tab and save the resulting files under the names
contigency stats ad 10 rm 10.tab, contigency stats ad 50 rm 100.tab, contigency stats ad 00 rm 00 random.tab,
respectively.

44CHAPTER 7. INFLUENCE OF GRAPH ALTERATION AND RANDOMIZATION ON CLUSTERING

7.2.3 Protocol for the command-line tools
If you have installed a stand-alone version of the NeAT distribution, you can use the
programs random-graph and alter-graph on the command-line. This requires to be
familiar with the Unix shell interface. If you don’t have the stand-alone tools, you can
skip this section and read the next section (Interpretation of the results).

We will now describe the use of random-graph , alter-graph , compare-classes
and contingency-stats as command line tools. For this tutorial, you need to have the
MCL program installed.

Start by going on the demo dataset download web page.http://rsat.scmbb.ulb.ac.be/rsat/data/neat tuto data/
and downloading the MIPS complex network file (complexes rm 00 ad 00.tab) and the
complexes (mips complexes.tab).

Network alteration

1. Go in the directory where you downloaded the file.

2. Use the following commands to alter the graph. Note that MCL is not an RSAT
/ NeAT program and thus cannot treat RSAT comments lines (starting with “#”
or with “;”). We thus have to suppress them in the command.

alter-graph -v 1 -i complexes_rm_00_ad_00.tab \
-rm_edges 10% -add_edges 10% \
| cut -f 1,2 | grep -v ’;’ > complexes_rm_10_ad_10.tab

Re-use this command, but modify the percentage of removed (-rm edges 50%)
and added edges (-add edges 100%). Save the resulting file with name com-
plexes rm 50 ad 100.tab.

Network randomization
1. Use the following commands to randomize the graph by shuffling the edges. The

node degrees will be conserved.

random-graph -v 1 -i complexes_rm_00_ad_00.tab \
-random_type node_degree \
| cut -f 1,2 | grep -v ’;’ > complexes_rm_00_ad_00_random.tab

Networks clustering and clustering assessment
1. Use the following commands to apply MCL on the network

mcl complexes_rm_00_ad_00.tab \
--abc -I 1.8 -o complexes_rm_00_ad_00_clusters.mcl

2. Convert the cluster file obtained with MCL with the program convert-classes
into a file that is readable by NeAT / RSAT (two column cluster file).

convert-classes -i complexes_rm_00_ad_00_clusters.mcl
-from mcl -to tab -o complexes_rm_00_ad_00_clusters.tab

7.2. QUANTITATIVE ASSESSMENT OF A CLUSTERING ALGORITHM 45

3. Compare the obtained clusters to the MIPS complexes with the program compare-
classes

compare-classes -q complexes_rm_00_ad_00_clusters.tab \
-r mips_complexes.tab \
-matrix QR \
-o complexes_rm_00_ad_00_clusters_cc_complexes_matrix.tab

4. Study the obtained matrix with the contingency-stats program

contingency-stats -i complexes_rm_00_ad_00_clusters_cc_complexes_matrix.tab \
-o contigency_stats_ad_00_rm_00.tab

Repeat these steps for complexes rm 10 ad 10.tab, complexes rm 50 ad 100.tab
and complexes rm 00 ad 00 random.tab and save the resulting files under the names
contigency stats ad 10 rm 10.tab, contigency stats ad 50 rm 100.tab, contigency stats ad 00 rm 00 random.tab,
respectively.

7.2.4 Interpretation of the results
We will now compare the performances of MCL when applied to networks containing
an increasing proportion of noise or no signal at all.

Files description

Randomized network As the real MIPS complexes network, this randomized net-
work contains 12262 edges between 1095 nodes. With our parameter choice, no edge
should be duplicated. However, as in random-graph the iterative process designed to
avoid duplicated edges may not be totally efficient, some duplicated edges may subsist
in the randomized network.

Altered networks This file is a classical NeAT tab-delimited edge list. However,
there is a fifth column that indicates whether the edge comes from the original graph
(original) or was added randomly (random).

• As the MIPS complex newtwork, the network with 10% of added and removed
edges contains 12262 edges between 1095 nodes, which is logical as we removed
and added the same number of edge (in this case 1226).

• The network with 100% of added edges (+ 12262 edges) and 50% of removed
edges (-6131 edges) contains 18393 edges between 1095 nodes. This graph con-
tains thus more noisy than relevant edges.

Contingency table See the previous chapter (Graph clustering) for a complete de-
scription of a contigency table.

46CHAPTER 7. INFLUENCE OF GRAPH ALTERATION AND RANDOMIZATION ON CLUSTERING

Contingency table metrics A list of metrics and their value. These will be described
in the next section.

Metrics description

Sensitivity, Positive predictive value and geometric accuracy See the previous
chapter (Graph clustering) for a complete description of a contigency table.

Score comparaison

The table summarizes the kind of values that should be obtained for the metrics de-
scribed in the previous section. As the alteration and the randomization procedure are
random processes, you should not obtain exactly the same results.

true ad10 / rm10 ad100 / rm50 random
ncol 125 114 713 361
nrow 220 220 220 220
mean 0.0569 0.0624 0.00998 0.0197
Sn 0.998 0.985 0.418 0.291
PPV 0.884 0.836 0.867 0.459
acc 0.941 0.91 0.642 0.375
acc g 0.939 0.907 0.602 0.365
Sn w 0.997 0.992 0.502 0.157
PPV w 0.621 0.62 0.688 0.244
acc g w 0.787 0.785 0.588 0.196
sep r 0.567 0.507 0.676 0.192
sep c 0.998 0.979 0.208 0.117
sep 0.752 0.704 0.375 0.15

As expected, the value of the global parameters, the geometric accuracy (row
acc g), the weighted geometric accuracy (row acc g w) and the separation (row sep)
decrease drastically as the network contain less and less relevant information.

We can observe that the sensitivity is more affected than the PPV and that the
complex wise separation (sep r) is more affected than the cluster wise separation. This
is due to the fact that by increasing the noise, MCL increases the number of small
sized clusters (ncol) too and, as we saw in previous section, this has an impact on the
sensitivity.

Note that with a random graph, we would have a separation of 0.15 but an un-
weighted geometric accuracy of 0.365 which is far from being 0. The relatively good
performances of MCL on the highly altered graph must thus be taken with caution as
the gain in performances is only of 23%. This illustrates the interest of using negative
controls.

Chapter 8

Path finding

8.1 Introduction

Given a biological network and two nodes of interest, the aim of k shortest path finding
is to enumerate the requested number of shortest paths connecting these nodes ordered
according to their weight. For instance, we might look for all shortest paths between
a receptor and a DNA binding protein to predict a signal transduction pathway from a
protein protein interaction network. Another example is the prediction of a metabolic
pathway given two reactions or compounds of interest and a metabolic network.
A problem encountered in many biological networks is the presence of so-called hub
nodes, that is nodes with a large number of connections. For example, in bacterial
protein-protein interaction networks, CRP has the role of a hub node because it interacts
with many targets. Likewise, in metabolic networks, compounds such as ADP or water
are hubs, since they are generated and consumed by thousands of reactions.
The shortest path very likely traverses the hub nodes of a network. It depends on the
biological context, whether this behaviour is desired or not. In metabolic networks, we
are less interested in paths going through water or ADP, since those paths are often not
biological relevant. For instance, we can bypass the glycolysis pathway by connecting
glucose via ADP to 3-Phosphoglycerate. To avoid finding irrelevant pathways like this
one, we tested different strategies and concluded that using a weighted network gave
the best results [5],[6]. In a weighted network, not the shortest, but the lightest paths
are searched. Hub nodes receive large weights, making them less likely to appear in a
solution path.
Whether weights are used and how they are set has to be decided depending on the
biological network of interest.

In this chapter, we will demonstrate path finding on the example of metabolic net-
works. We will work on a network assembled from all metabolic pathways annotated
for the yeast S. cerevisiae in BioCyc (Release 10.6) [3]. We will also show the influence
of the weighting scheme on path finding results.

47

48 CHAPTER 8. PATH FINDING

8.2 Computing the k shortest paths in weighted net-
works

8.2.1 Study case

The yeast network constructed from BioCyc data consists of 1,185 nodes and 2,656
edges. It has been obtained by unifying 171 metabolic pathways. Note that this network
is bipartite, which means that it is made up of two different node types: reactions and
compounds. An edge never connects two nodes of the same type. For the tutorial,
we choose to represent the metabolic data as undirected network. Note that higher
accuracies can be achieved by representing metabolic data by directed networks that
contain for each reaction its direct and reverse direction, which are treated as mutually
exclusive. See the advanced options of the Pathfinder tool for mutual exclusion of
reactions in directed metabolic networks.

We will recover the heme biosynthesis II pathway given its start and end compound,
namely glycine and protoheme. First, we will use the ”degree” weighting scheme,
which penalizes hub nodes. Second, we will infer the path using the ”unit” weighting
scheme and compare the results.

8.2.2 Protocol for the web server

1. In the NeATmenu, select the command k shortest path finding .

In the right panel, you should now see a form entitled “Pathfinder”.

2. Click on the button DEMO1.

The form is now filled with the BioCyc demo network, and the parameters have
been set up to their appropriate value for the demonstration. At the top of the
form, you can read some information about the goal of the demo, and the source
of the data.

3. Click on the button GO.

The computation should take no more than two minutes. When it is finished, a
link to the results should appear.

4. Click on the link to see the full result file.

It lists a table of all paths found for the requested rank number (5 by default).
You can also specify another type of output, for instance a network made up of
all paths found. Vary the parameter Output type for this.

To see how results change with modified weight, you can repeat steps 1 and 2.
Before clicking on GO, choose “unit weight” as Weighting scheme and set the
Rank to 1. Continue as described above. You will obtain another paths table than
before.

8.3. SUMMARY 49

8.2.3 Protocol for the command-line tools

This section assumes that you have installed the RSAT/NeAT command line tools.
You can find the demo network Scer biocyc.tab in $RSAT/public html/demo files.
Type the following command to enumerate paths up to the 5th rank in the weighted

network:

java -Xmx800m graphtools.algorithms.Pathfinder -g Scer_biocyc.tab -f tab -s gly -t protoheme -y con

To find paths in the unweighted network, type:

java -Xmx800m graphtools.algorithms.Pathfinder -g Scer_biocyc.tab -f tab -s gly -t protoheme -y unit -r 1

8.2.4 Interpretation of the results

Degree weighting scheme

First, we run Pathfinder with degree weighting scheme, which is the default weighting
scheme of the demo. This weighting scheme sets the weights of compound nodes to
their degree and of reaction nodes to one. The first ranked path obtained should look
like this:

GLY 5-AMINOLEVULINIC-ACID-SYNTHASE-RXN 5-AMINO-LEVULINATE
PORPHOBILSYNTH-RXN PORPHOBILINOGEN OHMETHYLBILANESYN-RXN
HYDROXYMETHYLBILANE UROGENIIISYN-RXN UROPORPHYRINOGEN-III
UROGENDECARBOX-RXN COPROPORPHYRINOGEN III RXN0-1461 PROTO-
PORPHYRINOGEN PROTOPORGENOXI-RXN PROTOPORPHYRIN IX PROTOHEMEFERROCHELAT-
RXN PROTOHEME

This path recovers very well the annotated heme biosynthesis II pathway.

Unit weighting scheme

We repeated path finding on the same network but used the unit weighting scheme,
which sets all node weights to one. This is equivalent to path finding in an unweighted
network. We obtain a large number of paths of first rank, among them this one:

GLY GLUTATHIONE-SYN-RXN ADP PEPDEPHOS-RXN PROTON PROTOHEMEFERROCHELAT-
RXN PROTOHEME

This path deviates strongly from the heme biosynthesis II pathway annotated in
BioCyc. It contains two hub nodes: ADP and PROTON.

8.3 Summary
To sum up: path finding can predict pathways with high accuracy if an appropriate
weighting scheme is applied to the network of interest. Our metabolic example shows
that the heme biosynthesis II pathway is accurately predicted when using a weighted
network and not found at all when using an unweighted network. The take home
message is that in order to use Pathfinder on biological networks, weights have to be
carefully adjusted.

50 CHAPTER 8. PATH FINDING

8.4 Strengths and Weaknesses of the approach

8.4.1 Strengths
The strength of the approach is that for a given network and appropriate weighting
scheme, pathways can be discovered with high accuracy. These pathways may be
known or novel pathways. Other methods such as pathway mapping are unable to
recover entirely novel pathways or pathways which are combinations of known path-
ways.

8.4.2 Weaknesses
The weakness is that the weighting scheme has to be optimized for the biological net-
work of interest.

8.5 Troubleshooting
1. No path could be found.

Make sure that your start and end nodes are present in your network of interest. If
no path could be found, none of the end nodes is reachable from the start nodes,
thus no path exists. For big graphs and long waiting time, there is the possibility
that the pre-processing step of REA, namely to compute the shortest paths from
the source to all nodes with Dijkstra, was not finished before the server timeout.
In this case, a path might exist but could not be detected due to the timeout.

2. An out of memory error occurred.

When searching for paths with the ”unit” weighting scheme in large networks,
there might be a large number of possible paths for each requested rank. Al-
though REA has a memory-efficient way to store paths with pointers, there is a
limit for the number of paths that can be hold in memory. Reduce the number of
requested paths or the size of the graph or use another weighting scheme.

Chapter 9

Metabolic path finding

9.1 Introduction

The metabolic pathfinder enumerates metabolic pathways between a set of start nodes
and a set of end nodes, where start and end nodes may be compounds, reactions or
enzymes (which are mapped to the reactions they catalyze). When choosing the right
parameters (which are set by default), the metabolic pathways found are with high
probability biochemically relevant.

The accuracy of path finding in metabolic networks (as in other biological net-
works) is diminished by the presence of hub nodes (highly connected compounds such
as ATP, NADPH or CO2) in the network. Path finding algorithms will traverse the net-
work preferentially via the hub nodes, thereby inferring biochemically irrelevant path-
ways. Different strategies have been devised to overcome this problem. Arita intro-
duced the mapping and tracing of atoms from substrates to products [1]. This strategy
is also applied in the Pathway Hunter Tool available at http://pht.tu-bs.de/PHT/. Other
tools rely on rules to avoid hub nodes, e.g. the pathway prediction system at UMBBD
(http://umbbd.msi.umn.edu/predict/). Didier Croes et al. used weighted graphs to avoid
highly connected nodes [5],[6]. The functionality of Didier Croes’ tool is covered by
the metabolic pathfinder (with the weighted reaction network).

Metabolic pathfinder relies on a mixed strategy: On the one hand, it makes use
of weighted graphs to avoid irrelevant hub nodes and on the other hand, it integrates
KEGG RPAIR annotation [18] to favor for each traversed reaction main over side
compounds. KEGG RPAIR is a database that divides reactions into reactant pairs
(substrate-product pairs) and classifies the reactant pairs according to their role in the
reaction. For instance, the cofac reactant pair A00001 couples NADP+ with NADPH.
Main reactant pairs connect main compounds and should be traversed preferentially by
path finding algorithms.

The KEGG RPAIR annotation is integrated by construction of the undirected RPAIR

51

52 CHAPTER 9. METABOLIC PATH FINDING

network, which consists of 7,058 reactant pairs, 4,297 compounds and 14,116 edges
for KEGG version 41.0. Alternatively, two other networks are available: the directed
reaction network evaluated in [6] and an undirected reaction-specific RPAIR network,
in which each reaction is divided in its reactant pairs.

Note that in more recent KEGG versions, identifiers of reactant pairs start with RP
instead of A.

In this chapter, we will recover the aldosterone pathway using the RPAIR and the
reaction network respectively. Note that the study case was carried out with data from
KEGG LIGAND version 41.0. Results might differ for more recent KEGG versions.

9.2 Enumerating metabolic pathways between compounds,
reactions or enzymes

9.2.1 Study case

Aldosterone is a human steroid hormone involved in the regulation of ion uptake in the
kidney and of blood pressure. It is synthesized from progesterone. We aim to recover
the aldosterone biosynthesis pathway by providing its start and end reaction.

9.2.2 Protocol for the web server

1. In the NeATmenu, select the entry Metabolic path finding .

In the right panel, you should now see a form entitled “Metabolic pathfinder”.

2. Click on the button DEMO2 located at the bottom of the form.

The metabolic pathfinder form is now filled with the start and end reaction of
the aldosterone biosynthesis pathway. In addition, information on this pathway
is displayed.

3. Click on the button GO.

4. The seed node selection table appears.

This table lists for each reaction the reactant pair identifier(s) associated to it.
Note that reaction R02724 is associated to two reactant pairs.

The seed node selection form allows you to select the correct among all com-
pounds matching your query string in case you provided a partial compound
name. If you give KEGG compound identifiers, it displays the name of each
compound. For EC numbers, it lists associated reactions or reactant pairs. The
seed node selection form also warns you in case you provide problematic identi-
fiers.

9.2. ENUMERATING METABOLIC PATHWAYS BETWEEN COMPOUNDS, REACTIONS OR ENZYMES53

5. Click on the button GO.

The computation should take no more than one minute.

Then, a table is displayed, which lists the found paths in the order of their weight.
The table may be sorted according to other criteria by clicking the respective col-
umn header. Each path node is linked to its corresponding KEGG entry for easy
inspection of results.

If you set Output format in the metabolic pathfinder form to “Graph”, you
obtain an image of the inferred pathway generated by the program dot of the
graphviz tool suite and a link to the pathway in the selected graph format.

To see how results change with the choice of the graph, you can repeat steps 1 and
2. In the metabolic path finding form, select Reaction graph instead of RPAIR graph
(which is selected by default) and follow step 3 to 5. You will notice in the seed node
selection form that the reaction identifiers are no longer mapped to reactant pairs.

9.2.3 Protocol for the command-line tools
This section assumes that you have installed the RSAT/NeAT command line tools.

The metabolic pathfinder is a web application on top of Pathfinder. You may run
metabolic path finding on command line by launching the Pathfinder command line
tool on the RPAIR and reaction networks, which are provided in the KEGG graph
repository reachable from the metabolic pathfinder manual page.

Type the following command in one line to find paths in the RPAIR network:

java -Xmx800m graphtools.algorithms.Pathfinder -g RPAIRGraph_allRPAIRs_undirected.txt -f flat
-s ’A02437’ -t ’A02894’ -b -y rpairs

To repeat path finding in the reaction network, type in one line:

java -Xmx800m graphtools.algorithms.Pathfinder -g ReactionGraph_directed.txt -d -f flat
-s ’R02724>/R02724<’ -t ’R03263>/R03263<’ -b -y con

9.2.4 Interpretation of the results
Metabolic path finding in the RPAIR network

The path of first rank does not reproduce exactly the annotated pathway. Instead, it
suggests a deviation via 21-hydroxypregnelonone, bypassing progesterone. This path
might be a valid alternative, as it appears on the KEGG map for C21-Steroid hormone
metabolism in human. One of the two second-ranked paths corresponds to the anno-
tated pathway.

First ranked path:
A02437 (1.14.15.6) Pregnenolone A03407 (1.14.99.10) 21-Hydroxypregnenolone A00731
(1.1.1.145, 5.3.3.1) 11-Deoxycorticosterone A03469 (1.14.15.4) Corticosterone A02893
(1.14.15.5) 18-Hydroxycorticosterone A02894

Second ranked paths:
A02437 (1.14.15.6) Pregnenolone A00386 (1.1.1.145, 5.3.3.1) Progesterone A02045

54 CHAPTER 9. METABOLIC PATH FINDING

(1.14.99.10) 11-Deoxycorticosterone A03469 (1.14.15.4) Corticosterone A02893 (1.14.15.5)
18-Hydroxycorticosterone A02894

A02437 (1.14.15.6) Pregnenolone A00386 (1.1.1.145, 5.3.3.1) Progesterone A02047
(1.14.15.4) 11beta-Hydroxyprogesterone A03467 (1.14.99.10) Corticosterone A02893
(1.14.15.5) 18-Hydroxycorticosterone A02894

Metabolic path finding in the reaction network

The paths of first and second rank traverse a side compound, namely adrenal ferredoxin.
None of these paths is therefore biochemically valid. In the weighted reaction graph
all highly connected side compounds such as ATP and water are avoided. However,
adrenal ferredoxin is a rare side compound, thus weighting is not sufficient to bypass
it.

First ranked path:
R02724< Reduced adrenal ferredoxin R03262> 18-Hydroxycorticosterone R03263>

Second ranked paths:

R02724> Oxidized adrenal ferredoxin R02726< Reduced adrenal ferredoxin R03262>
18-Hydroxycorticosterone R03263>

R02724> Oxidized adrenal ferredoxin R02725< Reduced adrenal ferredoxin R03262>
18-Hydroxycorticosterone R03263>

9.3 Summary

Metabolic path finder provides k shortest path finding in metabolic networks con-
structed from KEGG LIGAND and KEGG RPAIR. The metabolic path finder is cou-
pled with a mirror of the KEGG database to allow quick identification of partial com-
pound names and to annotate results.

9.4 Strengths and Weaknesses of the approach

9.4.1 Strengths

The metabolic path finder has the following benefits compared to other metabolic path
finding tools:

1. It has been extensively evaluated on 55 reference pathways from three organisms.

2. It supports compounds, reactions, reactant pairs and EC numbers as seed nodes.

3. It can handle sets of start and end nodes.

9.5. TROUBLESHOOTING 55

9.4.2 Weaknesses
The metabolic path finding tool has the following weaknesses:

1. RPAIR does not cover all compounds in KEGG. Thus, the RPAIR network is
less comprehensive than the reaction network.

2. By default, the metabolic path finder cannot infer directions of reactions in path-
ways because of the way the networks were constructed (being undirected or
treating all reactions as reversible). However, custom metabolic networks may
contain irreversible reactions and it is therefore possible to infer directed path-
ways from custom networks.

3. The metabolic path finder can only partly infer cyclic pathways or pathways in
which the same enzymes act repeatedly on a growing chain.

9.5 Troubleshooting
1. A Parameter error occurred.

By default, the optimal parameter values are set. However, if you set your own
values, they might not be in the supported value range. Check the Metabolic path
finder manual.

2. The seed node selection form displays the message: ”You provided invalid iden-
tifier(s)!”

This occurs when you provide identifiers that do not match any KEGG identifier,
EC number or KEGG compound name. Check your identifiers or in case you
provided a compound name, check whether the compound is present in KEGG.

3. The seed node selection form displays the message: ”The given compound is not
part of the sub-reaction graph.”

As stated in the Weaknesses section, the RPAIR network does not contain all
KEGG compounds due to incomplete coverage of the RPAIR database. Try to
search paths for this compound in the reaction network.

4. No path could be found.

This may happen in the RPAIR network because in this network reactant pairs
belonging to the same reaction exclude each other. Try the reaction-specific
RPAIR network or the reaction network instead.

5. An out of memory error occurred.

This may occur when requesting a large number of paths with the reactant sub-
reaction and compound weighting schemes set to unweighted. In general, when
setting the weighting schemes to unweighted, biochemically irrelevant paths will
be returned. Use another weighting scheme or reduce the number of requested
paths to avoid this error.

56 CHAPTER 9. METABOLIC PATH FINDING

Chapter 10

KEGG network provider

10.1 Introduction

KEGG network provider allows you to extract metabolic networks from KEGG [15]
that are specific to a set of organisms. In addition, you can exclude certain compounds
or reactions from these networks.

A range of tools works with KGML files. Click on “Manual -¿ Related tools” to see
a selection of them. KEGG network provider differs from these tools by allowing also
the extraction of RPAIR networks and by supporting filtering of compounds, reactions
and RPAIR classes.

KEGG network provider itself has no network analysis or visualization functions,
but you can use a NeAT tool (a choice of them will appear upon termination of network
construction) or any other graph analysis tool that reads gml, VisML or dot format for
these purposes.

For visualization of KEGG networks, you can use iPATH [22], KGML-ED [17]
or metaSHARK [12]. Yanasquare [27] and Pathway Hunter Tool [26] offer organism-
specific KEGG network construction in combination with analysis functions. With
[36], you can construct KEGG metabolic networks in R.

It should be noted that KEGG annotators omitted side compounds in the KGML
files. Thus, certain molecules (such as CO2, ATP or ADP) might be absent from the
metabolic networks extracted from these files.

It is also worth noting that constructing metabolic networks from KGML files pro-
duces networks of much lower quality than those obtained by manual metabolic recon-
struction. In manual reconstruction, several resources are taken into account, such as
the biochemical literature, databases and genome annotations (e.g. [8]). This is why
the metabolism of only a few organisms has been manually reconstructed so far.
In automatically reconstructed networks, reactions might not be balanced and com-
pounds might occur more than once with different identifiers (see e.g. [25] for anno-
tation problems in KEGG). For the purpose of path finding the automatically recon-
structed metabolic networks may still be of interest.

57

58 CHAPTER 10. KEGG NETWORK PROVIDER

10.2 Construction of yeast and E. coli metabolic net-
works

10.2.1 Study case

Our study case consists in the construction of two metabolic networks: one for five
yeast species and the other for Escherichia coli K-12 MG1655. We will compare path
finding results obtained for these two networks for a metabolic reference pathway (Ly-
sine biosynthesis).

10.2.2 Protocol for the web server

1. In the NeATmenu, select the entry Download organism-specific networks from
KEGG .

In the right panel, you should now see a form entitled “KEGG network provider”.

2. Click on the button DEMO located at the bottom of the form.

The KEGG network provider form has now loaded the organism identifiers of
five yeast species. As explained in the form, the species concerned are: Saccha-
romyces bayanus, Saccharomyces mikatae, Saccharomyces paradoxus, Schizosac-
charomyces pombe and Saccharomyces cerevisiae.

3. Click the checkbox directed network to construct a directed metabolic
network.

4. Click on the button GO.

The network extraction should take only a few seconds. Then, a link to the
extracted network is displayed. In addition (for formats tab-delimited and gml),
the Next step panel should appear.

5. Click on the button “Find metabolic paths in this graph” in the Next step panel.
This button opens the Metabolic pathfinder with the yeast network pre-loaded.

6. Enter C00049 (L-Aspartate) as source node and C00047 (L-Lysine) as target
node.

7. In section Path finding options, set the rank to 1. We are only interested in the
first rank.

8. In section Output, select Graph as output with “paths unified into one graph”

9. Click GO. The seed node selection form appears to confirm our seed node choice.

10. Click GO. After no more than one minute of computation, the graph unifying
first rank paths between L-aspartate and L-lysine should appear. You can store
the graph image on your machine for later comparison.

10.2. CONSTRUCTION OF YEAST AND E. COLI METABOLIC NETWORKS 59

Repeat the previous steps, but instead of selecting DEMO in the KEGG network
provider form, enter eco in the organisms text input field. Make sure to select directed
network in the KEGG network provider form, then follow steps 4 to 10 as described
above.

10.2.3 Protocol for the command-line tools
The command-line version of this tutorial is restricted to the E. coli and S. cerevisiae
metabolic networks. It is assumed that you have installed the required command-line
tools.

1. First we construct the directed metabolic network of E. coli.

java graphtools.util.MetabolicGraphProvider -i eco -d -o eco_metabolic_network_directed.txt

2. Then, we search for the lightest paths in this network as follows:

java graphtools.algorithms.Pathfinder -g eco_metabolic_network_directed.txt -f tab -s C00049
-t C00047 -r 1 -d -y con -b -T pathsUnion -O gml -o lysinebiosyn_eco.gml

3. To visualize the inferred pathway, you may open lysinebiosyn eco.gml in Cy-
toscape or in yED.

4. We proceed by constructing the metabolic network of S. cerevisiae:

java graphtools.util.MetabolicGraphProvider -i sce -d -o sce_metabolic_network_directed.txt

5. Then, we enumerate paths between L-aspartate and L-lysine in it:

java graphtools.algorithms.Pathfinder -g sce_metabolic_network_directed.txt -f tab -s C00049
-t C00047 -d -r 1 -y con -b -T pathsUnion -O gml -o lysinebiosyn_sce.gml

6. As before, we can visualize the lysinebiosyn sce.gml file in a graph editor capa-
ble of reading gml files (such as yED or Cytoscape).

10.2.4 Interpretation of the results
After having executed the steps of this tutorial, you should have obtained two pathway
images: one for the yeast network and one for the E. coli network. Both pathways
differ quite substantially. If we compare each of these pathways with the respective
organism-specific pathway map in KEGG, we notice that the pathway inferred for the
E. coli network reproduces the reference pathway correctly.
The yeast pathway deviates from the S. cerevisiae KEGG pathway map from L-aspartate
to but-1-ene-1,2,4-tricarboxylate, but recovers otherwise the reference pathway cor-
rectly (ignoring the intermediate steps 5-adenyl-2-aminoadipate and alpha-aminoadipoyl-
S-acyl enzyme associated to EC number 1.2.1.31).
For comparison purposes, we have chosen the same start and end compound for both
metabolic networks, but it should be noted that the reference lysine biosynthesis path-
way in S. cerevisiae starts from 2-oxoglutarate.

The lysine biosynthesis KEGG map for yeast is available at:

60 CHAPTER 10. KEGG NETWORK PROVIDER

http://www.genome.ad.jp/dbget-bin/get_pathway?org_name=sce&mapno=00300

The one for E. coli is available at:

http://www.genome.ad.jp/dbget-bin/get_pathway?org_name=eco&mapno=00300

10.3 Summary
The study case demonstrated that different organisms may employ different metabolic
pathways for the synthesis or degradation of a given compound. For this reason, it is
useful to be able to construct metabolic networks that are specific to a selected set of
organisms.

10.4 Troubleshooting
1. An empty graph (with zero nodes and edges) is returned. Make sure that the

entered organism identifiers are valid in KEGG. They should consist of three to
four letters only. If in doubt, check in the provided KEGG organism list.

Chapter 11

Pathway inference

11.1 Introduction
The idea of pathway inference is to connect a given set of seed nodes in the network
and thereby extracting a sub-network that is optimal according to certain criteria (e.g.
minimal weight or maximal relevance).
In the context of biological networks, the goal is to obtain a valid pathway for a
set of biological entities of interest, e.g. genes from microarray data or compounds
from metabolomic data. For instance, genes whose products participate in the same
metabolic pathway are often co-expressed or grouped together in operons or regulons.
We may try to reconstruct this metabolic pathway by associating the gene products to
relevant reactions and connecting these reactions in a metabolic network. The resulting
sub-network may be a known metabolic pathway or an unknown pathway consisting
of known pathways or known reactions and compounds. In the context of microarray
data, pathway inference from a set of co-expressed genes may predict which pathways
are up- or down-regulated.

11.2 Inferring a pathway for a set of co-expressed genes
As an example, we take the case study discussed in [34]. In this case study, a pathway is
assembled from genes in the cell-cycle regulated MET cluster [30]. Results described
in this tutorial have been obtained with KEGG RPAIR version 49.0.

11.2.1 Protocol for the web server
1. In the NeATmenu, select the entry Pathwayinference .

2. Copy-paste the gene names below in the seed nodes text field:
Met3
Met14

61

62 CHAPTER 11. PATHWAY INFERENCE

Met16
Met5
Met10
Met17
Met6

3. Select ”Genes/Enzymes” as identifier type.

4. In the text field ”Genes are from organism” type sce, the KEGG abbreviation for
Saccharomyces cerevisiae.

5. Push the GO button.

The result of the mapping of the given genes to KEGG RPAIRS (reactant pairs,
[18]) is displayed. Since more than one reactant pair is associated to each gene, we end
up with a group of reactant pair groups. Note that each gene (except for Met5) is asso-
ciated to one or more EC numbers, each of which has been mapped to its corresponding
reactions in KEGG, which have in turn be mapped to their corresponding reactant pairs.

You can now select how to deal with the groups. This is a sensitive choice that
strongly affects the inferred pathway and which depends on your data. In general, if
you keep the original groups, you assume implicitely that only a subset of the reactions
associated to the given gene will be active in the pathway. If you think that all reactions
associated to a gene might be active, choose ”Treat each group member as a separate
group” (the default treatment).

For the study case, we recommend you to keep the default.
Push GO. In a few minutes, the result page will be displayed.

11.2.2 Protocol for the command-line tools
This section assumes that you have installed the RSAT/NeAT command line tools.

Pathwayinference is a web application that calls the pathwayinference web service.
You can use the Pathwayinference command line tool on the networks provided in the
network repository (check the Pathwayinference Manual for this) to reproduce results
obtained with the web application on command line. Note that the mapping of genes
to reactions and group treatment can only be done via the web application.

Type the following command in one line:

java -Xmx800m graphtools.algorithms.Pathwayinference -g RPAIRGraph_allRPAIRs_undirected.txt
-s ’RP00016#RP00182/RP00647/RP00561/RP00143#RP00960#RP04049/RP00096#RP00168#
RP04532/RP00003/RP00446/RP00946#RP00857/RP04474/RP00050#RP04533’
-f flat -b -y con -P -u -x 0.05

11.2.3 Interpretation of the results
The resulting sub-network contains a large part of the pathway given in [34]. Note
that the chosen algorithm (kWalks in combination with Takahashi & Matsuyama) may
return one from a set of solutions, so your solution may deviate from the one de-
scribed here. Despite of this disadvantage, Takahashi & Matsuyama in combination

11.3. SUMMARY 63

with kWalks is the default algorithm, because it performed best in our evaluation. If
your result deviates from the one described below, repeat the inference with the algo-
rithm ”repetitive REA”.

The pathway described in the study case unites the sulfur assimilation and methio-
nine biosynthesis pathways. It consists of the following steps:
Sulfate 2.7.7.4 Adenylyl sulfate 2.7.1.25 3’phosphoadenylylsulfate 1.8.99.4 sulfite 1.8.1.2
sulfide (alias hydrogen sulfide) 4.2.99.10 Homocysteine 2.1.1.14 L-Methionine

The matching parts of the inferred pathway are:

RP00016 3’-Phosphoadenylyl sulfate RP00446 Adenylyl sulfate RP00960
and
RP00960 Sulfite RP00168 Hydrogen sulfide RP01406 L-Homocysteine RP00096
Seeds are printed in bold.

In addition, the inferred pathway contains a branch that leads from 3’-Phosphoadenylylselenate
to Adenylylselenate. This branch mirrors sulfur incorporation, but instead of sulfur, se-
lenium is incorporated.

The presence of both the selenium and sulfur incorporation pathways in the in-
ferred sub-network reflects the well-known fact that selenium might replace sulfur in
metabolism.

This example demonstrated that given a set of differentially expressed genes from
micro-array data and a metabolic network, it is possible to infer a metabolic pathway
that might be affected by altered expression of the query genes.

11.3 Summary

Pathwayinference allows extraction of sub-networks from larger networks given a set of
seed nodes. The web application is tailored to metabolic networks, but non-metabolic
networks can be processed as well.

11.4 Strengths and Weaknesses of the approach

11.4.1 Strengths

1. Sub-network extraction can be applied to any biological network.

2. It can discover unknown pathways consisting of known components.

3. It can be fine-tuned to favor certain nodes. For instance, in a global metabolic
network, reactions/compounds known to occur in certain species might receive
a weight much lower than other nodes, to favor extraction of species-specific
sub-networks.

64 CHAPTER 11. PATHWAY INFERENCE

4. Groups of seed nodes can be specified to reflect AND/OR relationships between
seeds.

5. The web application allows to infer metabolic pathways in metabolic networks
extracted from the two major metabolic databases KEGG [15] and MetaCyc [3].

6. For metabolic networks from MetaCyc or KEGG, the web application supports
compounds, reactions, reactant pairs, EC numbers or gene identifiers as seed
nodes and handles the required mapping of these seeds to reactions, reactant
pairs and compounds.

7. For metabolic networks from MetaCyc or KEGG, the web application performs
a mapping of the inferred sub-network to known pathways stored MetaCyc or
KEGG respectively.

8. Metabolic sub-network extraction has been validated on 71 metabolic pathways
extracted from MetaCyc.

11.4.2 Weaknesses
1. In general, the accuracy of pathway inference depends on the quality of the given

network and the number of seeds available.

2. Spiral-shaped metabolic pathways such as fatty acid biosynthesis can only be
partly inferred.

3. In the densely connected region of metabolic networks, metabolic pathway in-
ference cannot well distinguish alternative pathways without a large number of
seed nodes.

4. The algorithms are too time-consuming to estimate p-values by computing a
score distribution (where the score would be the sub-network weight) for ran-
domly chosen seed nodes on the fly. We envisage to pre-compute these distribu-
tions for the pre-loaded networks.

5. Only one sub-network is suggested. We envisage to compute a list of them
ranked by their weight.

11.5 Troubleshooting
1. Pathwayinference parameter error.

You provided insufficient or invalid parameters. Please check the pathwayinfer-
ence manual page.

2. You did not specify enough valid seed node groups! Pathwayinference needs at
least two valid seed node groups.

For the pre-loaded metabolic networks from KEGG and MetaCyc, each seed is
mapped to data (e.g. compound/reaction identifiers, EC numbers) from these two

11.5. TROUBLESHOOTING 65

databases. If the seeds do not map anything, they are considered to be invalid.
At least two valid seed groups are needed to infer a network.

3. The node with identifier ID is not part of the input graph.

Make sure that your input network contains the node with the given identifier.

4. Pathwayinference failed to extract a subgraph.

None of the seed node groups could be connected to any other seed node group.
Each might belong to a separate component of the input network or mutual ex-
clusion (in RPAIR networks) might prevent the connection of the seed groups.

66 CHAPTER 11. PATHWAY INFERENCE

Bibliography

[1] Masanori Arita. In silico atomic tracing by substrate-product relationships in es-
cherichia coli intermediary metabolism. Genome Research, 13:2455–2466, 2003.

[2] Sylvain Brohee and Jacques van Helden. Evaluation of clustering algorithms for
protein-protein interaction networks. BMC Bioinformatics, 7:488, 2006.

[3] R. Caspi, H. Foerster, C.A. Fulcher, P. Kaipa, M. Krummenacker, M. Latendresse,
S. Paley, S.Y. Rhee, A.G. Shearer, C. Tissier, T.C. Walk, P. Zhang, and P.D. Karp.
The metacyc dat abase of metabolic pathways and enzymes and the biocyc col-
lection of pathway/genome databases. Nucleic Acids Research, 36:D623–D631,
2008.

[4] The Gene Ontology Consortium. The gene ontology project in 2008. Nucleic
Acids Res, Nov 2007.

[5] D. Croes, F. Couche, S. Wodak, and J. v. Helden. Metabolic pathfinding: inferring
relevant pathways in biochemical networks. Nucleic Acids Research, 33:W326–
W330, 2005.

[6] D. Croes, F. Couche, S. Wodak, and J. v. Helden. Inferring meaningful pathways
in weighted metabolic networks. J. Mol. Biol., 356:222–236, 2006.

[7] A J Enright, S Van Dongen, and C A Ouzounis. An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Res, 30(7):1575–84, 2002.

[8] J. Foerster, I. Famili, P. Fu, B.O. Palsson, and J. Nielsen. Genome-scale recon-
struction of the saccharomyces cerevisiae metabolic network. Genome Research,
13:244–253, 2003.

[9] Julien Gagneur, David B Jackson, and Georg Casari. Hierarchical analysis of
dependency in metabolic networks. Bioinformatics, 19(8):1027–1034, May 2003.

[10] Anne-Claude Gavin, Patrick Aloy, Paola Grandi, Roland Krause, Markus
Boesche, Martina Marzioch, Christina Rau, Lars Juhl Jensen, Sonja Bastuck,
Birgit Dmpelfeld, Angela Edelmann, Marie-Anne Heurtier, Verena Hoffman,
Christian Hoefert, Karin Klein, Manuela Hudak, Anne-Marie Michon, Malgo-
rzata Schelder, Markus Schirle, Marita Remor, Tatjana Rudi, Sean Hooper, An-
dreas Bauer, Tewis Bouwmeester, Georg Casari, Gerard Drewes, Gitte Neubauer,

67

68 BIBLIOGRAPHY

Jens M Rick, Bernhard Kuster, Peer Bork, Robert B Russell, and Giulio Superti-
Furga. Proteome survey reveals modularity of the yeast cell machinery. Nature,
440(7084):631–636, Mar 2006.

[11] Zhenjun Hu, David M Ng, Takuji Yamada, Chunnuan Chen, Shuichi Kawashima,
Joe Mellor, Bolan Linghu, Minoru Kanehisa, Joshua M Stuart, and Charles
DeLisi. Visant 3.0: new modules for pathway visualization, editing, prediction
and construction. Nucleic Acids Res, 35(Web Server issue):W625–W632, Jul
2007.

[12] C. Hyland, J.W. Pinney, G.A. McConkey, and D.R. Westhead. metashark: a
www platform for interactive exploration of metabolic networks. Nucleic Acids
Research, 34:W725–W728, 2006.

[13] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A compre-
hensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl
Acad Sci U S A, 98(8):4569–74., 2001.

[14] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabsi. The large-scale
organization of metabolic networks. Nature, 407(6804):651–654, Oct 2000.

[15] M. Kanehisa, M. Araki, S. Goto, H. Masahiro, M. Hirakawa, M. Itoh,
T. Katayama, S. Kawashima, S. Okuda, T. Tokimatsu, and Y. Yamanishi. Kegg for
linking genomes to life and the environment. Nucleic Acids Research, 36:D480–
D484, 2008.

[16] A. D. King, N. Przulj, and I. Jurisica. Protein complex prediction via cost-based
clustering. Bioinformatics, 20(17):3013–3020, Nov 2004.

[17] C. Klukas and F. Schreiber. Dynamic exploration and editing of kegg pathway
diagrams. Bioinformatics, 23:344–350, 2007.

[18] M. Kotera, M. Hattori, M. Oh, R. Yamamoto, T. Komeno, J. Yabuzaki, K. Tono-
mura, S. Goto, and M. Kanehisa. Rpair: a reactant-pair database representing
chemical changes in enzymatic reactions. Genome Informatics, 15:P062, 2004.

[19] Nevan J Krogan, Gerard Cagney, Haiyuan Yu, Gouqing Zhong, Xinghua Guo,
Alexandr Ignatchenko, Joyce Li, Shuye Pu, Nira Datta, Aaron P Tikuisis, Thanuja
Punna, Jos M Peregrn-Alvarez, Michael Shales, Xin Zhang, Michael Davey,
Mark D Robinson, Alberto Paccanaro, James E Bray, Anthony Sheung, Bryan
Beattie, Dawn P Richards, Veronica Canadien, Atanas Lalev, Frank Mena, Peter
Wong, Andrei Starostine, Myra M Canete, James Vlasblom, Samuel Wu, Chris
Orsi, Sean R Collins, Shamanta Chandran, Robin Haw, Jennifer J Rilstone, Kiran
Gandi, Natalie J Thompson, Gabe Musso, Peter St Onge, Shaun Ghanny, Mandy
H Y Lam, Gareth Butland, Amin M Altaf-Ul, Shigehiko Kanaya, Ali Shilati-
fard, Erin O’Shea, Jonathan S Weissman, C. James Ingles, Timothy R Hughes,
John Parkinson, Mark Gerstein, Shoshana J Wodak, Andrew Emili, and Jack F
Greenblatt. Global landscape of protein complexes in the yeast saccharomyces
cerevisiae. Nature, 440(7084):637–643, Mar 2006.

BIBLIOGRAPHY 69

[20] B. Samuel Lattimore, Stijn van Dongen, and M. James C Crabbe. Genemcl in
microarray analysis. Comput Biol Chem, 29(5):354–359, Oct 2005.

[21] Raphal Leplae, Aline Hebrant, Shoshana J Wodak, and Ariane Toussaint.
Aclame: a classification of mobile genetic elements. Nucleic Acids Res,
32(Database issue):D45–D49, Jan 2004.

[22] I. Letunic, T. Yamada, M. Kanehisa, and P. Bork. ipath: interactive exploration
of biochemical pathways and networks. Trends in biochemical sciences, 33:101–
103, 2008.

[23] H. W. Mewes, S. Dietmann, D. Frishman, R. Gregory, G. Mannhaupt, K. F X
Mayer, M. Mnsterktter, A. Ruepp, M. Spannagl, V. Stmpflen, and T. Rattei. Mips:
analysis and annotation of genome information in 2007. Nucleic Acids Res, Dec
2007.

[24] Jose B Pereira-Leal, Anton J Enright, and Christos A Ouzounis. Detection of
functional modules from protein interaction networks. Proteins, 54(1):49–57,
Jan 2004.

[25] M.G. Poolman, B.K. Bonde, A. Gevorgyan, H.H. Patel, and D.A. Fell. Challenges
to be faced in the reconstruction of metabolic networks from public databases.
Systems Biology, IEE Proceedings, 153:379–384, 2006.

[26] S.A. Rahman, P. Advani, R. Schunk, R. Schrader, and D. Schomburg. Metabolic
pathway analysis web service (pathway hunter tool at cubic). Bioinformatics,
21:1189–1193, 2005.

[27] Roland Schwarz, Chunguang Liang, Christoph Kaleta, Mark Khnel, Eik Hoff-
mann, Sergei Kuznetsov, Michael Hecker, Gareth Griffiths, Stefan Schuster, and
Thomas Dandekar. Integrated network reconstruction, visualization and analysis
using yanasquare. BMC Bioinformatics, 8, 2007.

[28] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang,
Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a
software environment for integrated models of biomolecular interaction networks.
Genome Res, 13(11):2498–2504, Nov 2003.

[29] Roded Sharan, Igor Ulitsky, and Ron Shamir. Network-based prediction of pro-
tein function. Mol Syst Biol, 3:88, 2007.

[30] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen,
P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell
cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hy-
bridization. Mol Biol Cell, 9:3273–3297, 1998.

[31] Victor Spirin and Leonid A Mirny. Protein complexes and functional modules in
molecular networks. Proc Natl Acad Sci U S A, 100(21):12123–12128, Oct 2003.

70 BIBLIOGRAPHY

[32] P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lock-
shon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin,
D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields,
and J. M. Rothberg. A comprehensive analysis of protein-protein interactions in
saccharomyces cerevisiae. Nature, 403(6770):623–7., 2000.

[33] Stijn Van Dongen. Graph clustering by flow simulation. PhD thesis, Centers for
mathematics and computer science (CWI), University of Utrecht, 2000.

[34] Jacques van Helden, David Gilbert, Lorenz Wernisch, Michael Schroeder, and
Shoshana Wodak. Application of regulatory sequence analysis and metabolic
network analysis to the interpretation of gene expression data. Lecture Notes in
Computer Science, 2066:147–165, 2001.

[35] Christian von Mering, Lars J Jensen, Michael Kuhn, Samuel Chaffron, Tobias
Doerks, Beate Krger, Berend Snel, and Peer Bork. String 7–recent develop-
ments in the integration and prediction of protein interactions. Nucleic Acids
Res, 35(Database issue):D358–D362, Jan 2007.

[36] J.D. Zhang and S. Wiemann. Kegggraph: a graph approach to kegg pathway in r
and bioconductor. Bioinformatics, 25:1470–1471, 2009.

